Jain Madhavi
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
Heliyon. 2024 Jul 15;10(14):e34662. doi: 10.1016/j.heliyon.2024.e34662. eCollection 2024 Jul 30.
According to United Nations projections, future global urban growth will mostly occur in Asian megacities. In this study, a Cellular Automata based Artificial Neural Network (CA-ANN) model is used to simulate the future land use and land cover (LULC) over Delhi megacity (India). Delhi, projected to become the world's most populated city by 2030, is an example of a data poor city in Asia, having millions of climate vulnerable people. The CA-ANN model of Modules for Land Change Simulation (MOLUSCE), an open-source plugin, is first tested to simulate the LULC for 2009. Based on good validation results-structural similarity (SSIM; 0.8288), overall accuracy (79.78 %), kappa index of agreement (KIA; 77.25 %), and minimum validation overall error (0.0379), the same model set-up is used to carry out LULC simulation for 2030. This model is found to be simple, efficient, and computationally less expensive tool, and can be used to model future LULCs with a minimal set of inputs, a constraint often found in data poor cities. Results show continued increase in built-up area from 38.3 % (2014) to 53.8 % (2030), at the expense of cultivable areas, forests, and wastelands. The study incorporates past and future LULC change trajectories to highlight the changing LULC dynamics of the megacity from 1977 to 2030. Rate of urban sprawl, calculated using compound annual growth rate (CAGR) is projected to be 2.51 % for 2014-2030, substantially higher than the estimates for 2006-2014 (0.62 %). Further, the past and future urban growth patterns for Delhi are found to mimic other big Asian cities. The database generated from the present study has wide applicability for scientific research community, governmental bodies, profit and non-profit organizations for topics concerning-future urban climate research, climate risk and adaption policy frameworks, climate finance budgeting, future town planning, etc.
根据联合国的预测,未来全球城市增长将主要发生在亚洲的特大城市。在本研究中,基于元胞自动机的人工神经网络(CA-ANN)模型被用于模拟印度德里特大城市未来的土地利用和土地覆盖(LULC)情况。预计到2030年德里将成为世界上人口最多的城市,它是亚洲一个数据匮乏城市的典型例子,有数百万易受气候影响的人口。首先对开源插件土地变化模拟模块(MOLUSCE)的CA-ANN模型进行测试,以模拟2009年的土地利用和土地覆盖情况。基于良好的验证结果——结构相似性(SSIM;0.8288)、总体精度(79.78%)、一致性kappa指数(KIA;77.25%)和最小验证总体误差(0.0379),使用相同的模型设置对2030年的土地利用和土地覆盖进行模拟。该模型被发现是一个简单、高效且计算成本较低的工具,并且可以使用最少的输入集对未来的土地利用和土地覆盖情况进行建模,这是数据匮乏城市中经常遇到的一个限制条件。结果表明,建成区面积将持续增加,从2014年的38.3%增至2030年的53.8%,代价是可耕地、森林和荒地面积减少。该研究纳入了过去和未来的土地利用和土地覆盖变化轨迹,以突出1977年至2030年特大城市土地利用和土地覆盖动态的变化。使用复合年增长率(CAGR)计算得出,2014年至2030年城市扩张率预计为2.51%,大幅高于2006年至2014年的估计值(0.62%)。此外,德里过去和未来的城市增长模式与其他亚洲大城市相似。本研究生成的数据库在涉及未来城市气候研究、气候风险与适应政策框架、气候资金预算、未来城镇规划等主题方面,对科研团体、政府机构、盈利和非营利组织具有广泛的适用性。