Arbi Marwa, Khedhiri Marwa, Ayouni Kaouther, Souiai Oussema, Dhouib Samar, Ghanmi Nidhal, Benkahla Alia, Triki Henda, Haddad-Boubaker Sondes
Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.
Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia.
Evol Bioinform Online. 2024 Aug 14;20:11769343241272415. doi: 10.1177/11769343241272415. eCollection 2024.
The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.
重组在促进RNA病毒进化和潜在流行变体的出现中起着关键作用。一些研究调查了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)之间的重组情况,但未探讨其对病毒-宿主相互作用的影响。为了从频率和分布方面研究重组的负担,首先使用3seq软件在BQ亚变体中的44230个奥密克戎序列和正在研究的“ML”(多谱系)指定序列中探索重组的发生情况。其次,使用对接工具分析重组对刺突蛋白与血管紧张素转换酶2(ACE2)受体以及中和抗体(nAbs)之间相互作用的影响。在BQ和ML毒株中分别检测到56.91%和82.20%的重组。重组主要发生在刺突基因和开放阅读框1a(ORF1a)基因中。对于BQ重组毒株,对接分析表明刺突与ACE2强烈相互作用,与nAbs弱相互作用。S373P、S375F和T376A突变构成一个残基网络,增强了受体结合域(RBD)与ACE2的相互作用。RBD中的13个突变(S373P、S375F、T376A、D405N、R408S、K417N、N440K、S477N、P494S、Q498R、N501Y和Y505H)和N端结构域(NTD)中的Y240H似乎通过改变刺突与nAbs的相互作用而参与重组体的免疫逃逸。总之,这项“计算机模拟”研究表明,重组机制在奥密克戎BQ和ML变体中很常见。它突出了新的关键突变,这些突变可能与增强刺突与ACE2的结合(F376A)以及逃避nAbs(RBD:F376A、D405N、R408S、N440K、S477N、P494S和Y505H;NTD:Y240H)有关。我们的研究结果为制定针对未来SARS-CoV-2浪潮的有效预防和治疗策略提供了重要见解。