Hu Yichan, Hu Tao, Zhang Yuanwei, Huang Haichao, Pei Yixian, Yang Yihan, Wu Yudong, Hu Haibo, Liang Guojin, Cheng Hui-Ming
School of Materials Science and Engineering, Anhui University Hefei 230601 China
Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology Shenzhen 518055 China
Chem Sci. 2024 Aug 6;15(35):14195-201. doi: 10.1039/d4sc04206a.
The issue of polyiodide crossover at an iodine cathode significantly diminishes the efficiency and practicality of aqueous zinc-iodine flow batteries (ZIFBs). To address this challenge, we have introduced a localized high iodine concentration (LHIC) coating layer onto a porous polyolefin membrane, which featured strong chemical adsorption by exploiting adduct chemistry between the iodine species and a series of low-cost oxides, , MgO, CeO, ZrO, TiO, and AlO. Leveraging the LHIC based on the potent iodine adsorption capability, the as-fabricated MgO-LHIC composite membrane effectively mitigates iodine crossover Donnan repulsion and concentration gradient effects. At a high volumetric capacity of 17.8 Ah L, ZIFBs utilizing a MgO-LHIC composite membrane exhibited improved coulombic efficiency (CE) and energy efficiency (EE) of 96.3% and 68.6%, respectively, along with long-term cycling stability of 170 cycles. These results significantly outperform those of ZIFBs based on a blank polyolefin membrane (78.2%/61.9% after 60 cycles) and the widely used commercial Nafion N117 (67.8%/53.0% after 23 cycles). Even under high-temperature conditions (60 °C), the LHIC-based battery still demonstrates superior CE/EE of 95.1%/67.5% compared to those of the blank polyolefin membrane (CE/EE: 61.1%/46.8%). Our pioneering research showcases enormous prospects for developing high-efficiency and low-cost composite membranes based on adduct chemistry for large-scale energy storage applications.
碘阴极处的多碘化物交叉问题显著降低了水系锌碘液流电池(ZIFB)的效率和实用性。为应对这一挑战,我们在多孔聚烯烃膜上引入了局部高碘浓度(LHIC)涂层,该涂层通过利用碘物种与一系列低成本氧化物(MgO、CeO、ZrO、TiO和AlO)之间的加合物化学实现了强化学吸附。基于强大的碘吸附能力,所制备的MgO-LHIC复合膜有效减轻了碘交叉、唐南排斥和浓度梯度效应。在17.8 Ah L的高体积容量下,使用MgO-LHIC复合膜的ZIFB表现出提高的库仑效率(CE)和能量效率(EE),分别为96.3%和68.6%,以及170次循环的长期循环稳定性。这些结果显著优于基于空白聚烯烃膜的ZIFB(60次循环后为78.2%/61.9%)和广泛使用的商业Nafion N117(23次循环后为67.8%/53.0%)。即使在高温条件(60°C)下,基于LHIC的电池仍表现出优于空白聚烯烃膜的CE/EE,分别为95.1%/67.5%(空白聚烯烃膜的CE/EE为61.1%/46.8%)。我们的开创性研究展示了基于加合物化学开发用于大规模储能应用的高效低成本复合膜的巨大前景。