Back Seungho, Xu Liangliang, Moon Joonhee, Kim Jinuk, Liu Yanan, Yi Seung Yeop, Choi Daeeun, Lee Jinwoo
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, 34141, Republic of Korea.
Division of Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea.
Small. 2024 Dec;20(50):e2405487. doi: 10.1002/smll.202405487. Epub 2024 Aug 2.
Practical utilization of zinc-iodine (Zn-I) batteries is hindered by significant challenges, primarily stemming from the polyiodide shuttle effect on the cathode and dendrite growth on the anode. Herein, a feasible redox-active electrolyte has been introduced with tetraethylammonium iodide as an additive that simultaneously addresses the above mentioned challenges via polyiodide solidification on the cathode and the electrostatic shielding effect on the anode. The tetraethylammonium (TEA) captures water-soluble polyiodide intermediates (I , I ), forming a solid complex at the cathode, thereby suppressing capacity loss during charge/discharge. Furthermore, the TEA mitigates dendrite growth on the Zn anode via the electrostatic shielding effect, promoting uniform and compact Zn deposition at the anode. Consequently, the Zn||Zn symmetric cell demonstrates superior cycling stability during Zn plating/stripping over 4,200 h at 1 mA cm and 1 mAh cm. The Zn||NiNC full-cell exhibits a stable capacity retention of 98.4% after 20 000 cycles (>5 months) with near-unity Coulombic efficiency at 1 A g. The study provides novel insights for establishing a new direction for low-cost, sustainable, and long-lifespan Zn-I batteries.
锌碘(Zn-I)电池的实际应用受到重大挑战的阻碍,这些挑战主要源于阴极上的多碘化物穿梭效应和阳极上的枝晶生长。在此,引入了一种可行的氧化还原活性电解质,其中碘化四乙铵作为添加剂,通过在阴极上固化多碘化物和对阳极的静电屏蔽效应,同时解决上述挑战。四乙铵(TEA)捕获水溶性多碘化物中间体(I ,I ),在阴极形成固体络合物,从而抑制充放电过程中的容量损失。此外,TEA通过静电屏蔽效应减轻锌阳极上的枝晶生长,促进阳极上锌的均匀致密沉积。因此,Zn||Zn对称电池在1 mA cm 和1 mAh cm 条件下进行锌电镀/剥离时,在超过4200小时的时间内表现出优异的循环稳定性。Zn||NiNC全电池在1 A g 下经过20000次循环(>5个月)后,具有98.4%的稳定容量保持率,库仑效率接近100%。该研究为低成本、可持续和长寿命Zn-I电池建立新方向提供了新的见解。