Suppr超能文献

一种用于对复杂行为中的日常节律进行实时分类的昼夜行为分析套件。

A circadian behavioral analysis suite for real-time classification of daily rhythms in complex behaviors.

作者信息

Perry Logan J, Perez Blanca E, Wahba Larissa Rays, Nikhil K L, Lenzen William C, Jones Jeff R

机构信息

Department of Biology, Texas A&M University, College Station, TX.

Department of Biology, Washington University in St. Louis, St. Louis, MO.

出版信息

bioRxiv. 2024 Aug 7:2024.02.23.581778. doi: 10.1101/2024.02.23.581778.

Abstract

Measuring animal behavior over long timescales has been traditionally limited to behaviors that are easily measurable with real-time sensors. More complex behaviors have been measured over time, but these approaches are considerably more challenging due to the intensive manual effort required for scoring behaviors. Recent advances in machine learning have introduced automated behavior analysis methods, but these often overlook long-term behavioral patterns and struggle with classification in varying environmental conditions. To address this, we developed a pipeline that enables continuous, parallel recording and acquisition of animal behavior for an indefinite duration. As part of this pipeline, we applied a recent breakthrough self-supervised computer vision model to reduce training bias and overfitting and to ensure classification robustness. Our system automatically classifies animal behaviors with a performance approaching that of expert-level human labelers. Critically, classification occurs continuously, across multiple animals, and in real time. As a proof-of-concept, we used our system to record behavior from 97 mice over two weeks to test the hypothesis that sex and estrogen influence circadian rhythms in nine distinct home cage behaviors. We discovered novel sex- and estrogen-dependent differences in circadian properties of several behaviors including digging and nesting rhythms. We present a generalized version of our pipeline and novel classification model, the "circadian behavioral analysis suite," (CBAS) as a user-friendly, open-source software package that allows researchers to automatically acquire and analyze behavioral rhythms with a throughput that rivals sensor-based methods, allowing for the temporal and circadian analysis of behaviors that were previously difficult or impossible to observe.

摘要

长期以来,测量动物行为的时间尺度一直局限于那些能够通过实时传感器轻松测量的行为。随着时间的推移,已经对更复杂的行为进行了测量,但由于对行为评分需要大量的人工操作,这些方法面临着更大的挑战。机器学习的最新进展引入了自动化行为分析方法,但这些方法往往忽略了长期行为模式,并且在不同环境条件下的分类方面存在困难。为了解决这个问题,我们开发了一种流程,能够连续、并行地记录和获取动物行为,记录时长不限。作为该流程的一部分,我们应用了一种最新的突破性自监督计算机视觉模型,以减少训练偏差和过拟合,并确保分类的稳健性。我们的系统能够自动对动物行为进行分类,其性能接近专家级人类标注员。至关重要的是,分类是连续进行的,适用于多只动物,并且是实时的。作为概念验证,我们使用我们的系统在两周内记录了97只小鼠的行为,以检验性别和雌激素会影响九种不同笼内行为的昼夜节律这一假设。我们发现了几种行为(包括挖掘和筑巢节律)的昼夜特性中存在新的性别和雌激素依赖性差异。我们展示了我们的流程和新型分类模型的通用版本,即“昼夜行为分析套件”(CBAS),它是一个用户友好的开源软件包,使研究人员能够自动获取和分析行为节律,其通量可与基于传感器的方法相媲美,从而能够对以前难以或无法观察到的行为进行时间和昼夜分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd50/11326128/4fb84f48eaac/nihpp-2024.02.23.581778v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验