The Jackson Laboratory, Bar Harbor, United States.
Elife. 2021 Mar 17;10:e63207. doi: 10.7554/eLife.63207.
Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior that is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.
自动化检测复杂动物行为仍然是神经科学中的一个难题,特别是对于那些由不同的连续运动组成的行为。梳理是一种典型的刻板行为,通常被用作精神遗传学中的一个内表型。在这里,我们以小鼠梳理行为为例,开发了一种通用的神经网络架构,能够以人类观察者级别的性能进行动态动作检测,并在具有高度视觉多样性的数十种小鼠品系中运行。我们深入了解了实现这种性能所需的人工标注训练数据量。我们在 62 个品系的 2457 只小鼠中调查了旷场中的梳理行为,确定了其可遗传成分,进行了全基因组关联分析以描绘其遗传结构,并进行了表型关联分析以通过共享潜在遗传学将人类精神特质联系起来。我们的通用机器学习解决方案可以自动对大型数据集进行复杂行为分类,这将有助于系统地研究行为机制。