Suppr超能文献

基于表面的贝叶斯模型揭示的新生儿功能连接的个体模式。

Individual patterns of functional connectivity in neonates as revealed by surface-based Bayesian modeling.

作者信息

Derman Diego, Pham Damon D, Mejia Amanda F, Ferradal Silvina L

机构信息

Department of Intelligent Systems Engineering, Indiana University, USA.

Department of Statistics, Indiana University, USA.

出版信息

bioRxiv. 2024 Aug 8:2023.07.24.550218. doi: 10.1101/2023.07.24.550218.

Abstract

Resting-state functional connectivity is a widely used approach to study the functional brain network organization during early brain development. However, the estimation of functional connectivity networks in individual infants has been rather elusive due to the unique challenges involved with functional magnetic resonance imaging (fMRI) data from young populations. Here, we use fMRI data from the developing Human Connectome Project (dHCP) database to characterize individual variability in a large cohort of term-born infants (N = 289) using a novel data-driven Bayesian framework. To enhance alignment across individuals, the analysis was conducted exclusively on the cortical surface, employing surface-based registration guided by age-matched neonatal atlases. Using 10 minutes of resting-state fMRI data, we successfully estimated subject-level maps for fourteen brain networks/subnetworks along with individual functional parcellation maps that revealed differences between subjects. We also found a significant relationship between age and mean connectivity strength in all brain regions, including previously unreported findings in higher-order networks. These results illustrate the advantages of surface-based methods and Bayesian statistical approaches in uncovering individual variability within very young populations.

摘要

静息态功能连接是研究早期大脑发育过程中大脑功能网络组织的一种广泛应用的方法。然而,由于来自年轻人群的功能磁共振成像(fMRI)数据存在独特挑战,个体婴儿功能连接网络的估计一直相当困难。在此,我们使用来自发育中人类连接组计划(dHCP)数据库的fMRI数据,通过一种新颖的数据驱动贝叶斯框架,对一大群足月儿(N = 289)的个体变异性进行表征。为了增强个体间的对齐,分析仅在皮质表面进行,采用由年龄匹配的新生儿图谱引导的基于表面的配准。利用10分钟的静息态fMRI数据,我们成功估计了14个脑网络/子网络的个体水平图谱以及揭示个体差异的个体功能分区图谱。我们还发现,所有脑区的年龄与平均连接强度之间存在显著关系,包括高阶网络中以前未报告的发现。这些结果说明了基于表面的方法和贝叶斯统计方法在揭示极年轻人群个体变异性方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71f3/11326129/03e778b073be/nihpp-2023.07.24.550218v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验