Suppr超能文献

使用visiumStitched整合跨Visium捕获区域的基因表达和成像数据。

Integrating gene expression and imaging data across Visium capture areas with visiumStitched.

作者信息

Eagles Nicholas J, Bach Svitlana V, Tippani Madhavi, Ravichandran Prashanthi, Du Yufeng, Miller Ryan A, Hyde Thomas M, Page Stephanie C, Martinowich Keri, Collado-Torres Leonardo

机构信息

Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 21205 Baltimore, USA.

Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21218, Baltimore, USA.

出版信息

bioRxiv. 2024 Aug 9:2024.08.08.607222. doi: 10.1101/2024.08.08.607222.

Abstract

BACKGROUND

Visium is a widely-used spatially-resolved transcriptomics assay available from 10x Genomics. Standard Visium capture areas (6.5mm by 6.5mm) limit the survey of larger tissue structures, but combining overlapping images and associated gene expression data allow for more complex study designs. Current software can handle nested or partial image overlaps, but is designed for merging up to two capture areas, and cannot account for some technical scenarios related to capture area alignment.

RESULTS

We generated Visium data from a postmortem human tissue sample such that two capture areas were partially overlapping and a third one was adjacent. We developed the R/Bioconductor package , which facilitates stitching the images together with (), and constructing R objects with the stitched images and gene expression data. constructs an artificial hexagonal array grid which allows seamless downstream analyses such as spatially-aware clustering without discarding data from overlapping spots. Data stitched with can then be interactively visualized with .

CONCLUSIONS

provides a simple, but flexible framework to handle various multi-capture area study design scenarios. Specifically, it resolves a data processing step without disrupting analysis workflows and without discarding data from overlapping spots. relies on affine transformations by , which have limitations and are less accurate when aligning against an atlas or other situations. provides an easy-to-use solution which expands possibilities for designing multi-capture area study designs.

摘要

背景

Visium是10x Genomics公司推出的一种广泛使用的空间分辨转录组学检测方法。标准的Visium捕获区域(6.5毫米×6.5毫米)限制了对更大组织结构的检测,但将重叠图像和相关基因表达数据相结合可实现更复杂的研究设计。当前的软件可以处理嵌套或部分图像重叠,但专为合并最多两个捕获区域而设计,无法处理与捕获区域对齐相关的一些技术情况。

结果

我们从一份死后人体组织样本中生成了Visium数据,使得两个捕获区域部分重叠,第三个捕获区域相邻。我们开发了R/Bioconductor软件包,该软件包便于使用()将图像拼接在一起,并用拼接后的图像和基因表达数据构建R对象。构建了一个人工六边形阵列网格,可实现无缝的下游分析,如空间感知聚类,而不会丢弃重叠点的数据。然后,可以使用对用拼接的数据进行交互式可视化。

结论

提供了一个简单但灵活的框架来处理各种多捕获区域研究设计场景。具体而言,它解决了一个数据处理步骤,而不会中断分析工作流程,也不会丢弃重叠点的数据。依赖于的仿射变换,这种变换存在局限性,在与图谱对齐或其他情况下不太准确。提供了一个易于使用的解决方案,扩展了设计多捕获区域研究设计的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bd2/11326277/63385a6b8acc/nihpp-2024.08.08.607222v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验