Suppr超能文献

使用深度高斯过程对齐空间基因组学数据。

Alignment of spatial genomics data using deep Gaussian processes.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, USA.

Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nat Methods. 2023 Sep;20(9):1379-1387. doi: 10.1038/s41592-023-01972-2. Epub 2023 Aug 17.

Abstract

Spatially resolved genomic technologies have allowed us to study the physical organization of cells and tissues, and promise an understanding of local interactions between cells. However, it remains difficult to precisely align spatial observations across slices, samples, scales, individuals and technologies. Here, we propose a probabilistic model that aligns spatially-resolved samples onto a known or unknown common coordinate system (CCS) with respect to phenotypic readouts (for example, gene expression). Our method, Gaussian Process Spatial Alignment (GPSA), consists of a two-layer Gaussian process: the first layer maps observed samples' spatial locations onto a CCS, and the second layer maps from the CCS to the observed readouts. Our approach enables complex downstream spatially aware analyses that are impossible or inaccurate with unaligned data, including an analysis of variance, creation of a dense three-dimensional (3D) atlas from sparse two-dimensional (2D) slices or association tests across data modalities.

摘要

空间分辨基因组技术使我们能够研究细胞和组织的物理结构,并有望了解细胞之间的局部相互作用。然而,要在切片、样本、尺度、个体和技术之间精确对齐空间观测结果仍然很困难。在这里,我们提出了一种概率模型,该模型可以根据表型读数(例如基因表达)将空间分辨样本与已知或未知的公共坐标系(CCS)对齐。我们的方法高斯过程空间对齐(GPSA)由两层高斯过程组成:第一层将观察到的样本的空间位置映射到 CCS 上,第二层将 CCS 映射到观察到的读数上。我们的方法可以进行复杂的下游空间感知分析,而未对齐的数据则无法或不准确进行此类分析,包括方差分析、从稀疏的二维(2D)切片创建密集的三维(3D)图谱或跨数据模态的关联测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f188/10482692/c2fd14117476/41592_2023_1972_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验