Wang Bin, Audette Nicholas J, Schneider David M, Aljadeff Johnatan
Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA.
Center for Neural Science, New York University, New York, NY 10003, USA.
bioRxiv. 2024 Aug 7:2024.08.05.606684. doi: 10.1101/2024.08.05.606684.
Neural circuits construct internal 'world-models' to guide behavior. The predictive processing framework posits that neural activity signaling sensory predictions and concurrently computing prediction-errors is a signature of those internal models. Here, to understand how the brain generates predictions for complex sensorimotor signals, we investigate the emergence of high-dimensional, multi-modal predictive representations in recurrent networks. We find that robust predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary to previous proposals of functionally specialized cell-types, the network exhibits desegregation of stimulus and prediction-error representations. We confirmed these model predictions by experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned expectations. When constrained by data, our model further reveals and makes concrete testable experimental predictions for the distinct functional roles of excitatory and inhibitory neurons, and of neurons in different layers along a laminar hierarchy, in computing multi-modal predictions. These results together imply that in natural conditions, neural representations of internal models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant information. The generality of our model advances the understanding of computation of internal models across species, by incorporating different types of predictive computations into a unified framework.
神经回路构建内部“世界模型”以指导行为。预测处理框架假定,发出感觉预测信号并同时计算预测误差的神经活动是这些内部模型的一个特征。在此,为了解大脑如何对复杂的感觉运动信号生成预测,我们研究了循环网络中高维、多模态预测表征的出现。我们发现,在具有松散兴奋/抑制平衡的网络中会出现强大的预测处理。与之前关于功能专门化细胞类型的提议相反,该网络表现出刺激和预测误差表征的分离。我们通过使用丰富的刺激集来违反习得预期,对预测编码回路进行实验探测,从而证实了这些模型预测。当受数据约束时,我们的模型进一步揭示并对兴奋性和抑制性神经元以及沿层状层次结构不同层中的神经元在计算多模态预测方面的不同功能作用做出了具体的可测试实验预测。这些结果共同表明,在自然条件下,内部模型的神经表征高度分散,但具有结构,以便灵活读出与行为相关的信息。我们模型的通用性通过将不同类型的预测计算纳入一个统一框架,推进了对跨物种内部模型计算的理解。