Suppr超能文献

通过深度测序推断天然微生物分离株混合培养物的组成。

Inferring the composition of a mixed culture of natural microbial isolates by deep sequencing.

作者信息

Voorhies Mark, Joehnk Bastian, Uehling Jessie, Walcott Keith, Dubin Claire, Mead Heather L, Homer Christina M, Galgiani John N, Barker Bridget M, Brem Rachel B, Sil Anita

机构信息

Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America.

Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America.

出版信息

bioRxiv. 2024 Aug 5:2024.08.05.606565. doi: 10.1101/2024.08.05.606565.

Abstract

Next generation sequencing has unlocked a wealth of genotype information for microbial populations, but phenotyping remains a bottleneck for exploiting this information, particularly for pathogens that are difficult to manipulate. Here, we establish a method for high-throughput phenotyping of mixed cultures, in which the pattern of naturally occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes which can be read out by sequencing. We demonstrate that our method can correctly deconvolute strain proportions in simulated mixed-strain pools. As an experimental test of our method, we perform whole genome sequencing of 66 natural isolates of the thermally dimorphic pathogenic fungus and infer the strain compositions for large mixed pools of these strains after competition at 37°C and room temperature. We validate the results of these selection experiments by recapitulating the temperature-specific enrichment results in smaller pools. Additionally, we demonstrate that strain fitness estimated by our method can be used as a quantitative trait for genome-wide association studies. We anticipate that our method will be broadly applicable to natural populations of microbes and allow high-throughput phenotyping to match the rate of genomic data acquisition.

摘要

新一代测序技术为微生物群体揭示了丰富的基因型信息,但表型分析仍是利用这些信息的瓶颈,对于难以操作的病原体而言尤其如此。在此,我们建立了一种用于混合培养物高通量表型分析的方法,其中每个分离株中自然发生的单核苷酸多态性模式被用作内在条形码,可通过测序读取。我们证明,我们的方法能够正确解析模拟混合菌株库中的菌株比例。作为对我们方法的实验测试,我们对热双态致病真菌的66个自然分离株进行了全基因组测序,并推断出这些菌株在37°C和室温下竞争后大型混合库中的菌株组成。我们通过在较小的库中重现温度特异性富集结果来验证这些选择实验的结果。此外,我们证明,通过我们的方法估计的菌株适应性可作为全基因组关联研究的数量性状。我们预计,我们的方法将广泛适用于微生物的自然群体,并使高通量表型分析能够与基因组数据获取的速度相匹配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验