Wang Weiwei, Liu Xiaofen
University of Texas Southwestern Medical Center.
Res Sq. 2024 Aug 7:rs.3.rs-4402878. doi: 10.21203/rs.3.rs-4402878/v1.
α3β glycine receptor (GlyR) is a subtype of the GlyRs that belongs to the Cys-loop receptor superfamily. It is a target for non-psychoactive pain control drug development due to its high expression in the spinal dorsal horn and indispensable roles in pain sensation. α3β GlyR activity is inhibited by a phosphorylation in the large internal M3/M4 loop of α3 through the prostaglandin E2 (PGE) pathway, which can be reverted by a small molecule analgesic, 2, 6-DTBP. However, the mechanism of regulation by phosphorylation or 2, 6-DTBP is unknown. Here we show M3/M4 loop compaction through phosphorylation and 2, 6-DTBP binding, which in turn changes the local environment and rearranges ion conduction pore conformation to modulate α3β GlyR activity. We resolved glycine-bound structures of α3β GlyR with and without phosphorylation, as well as in the presence of 2, 6-DTBP and found no change in functional states upon phosphorylation, but transition to an asymmetric super open pore by 2, 6-DTBP binding. Single-molecule Forster resonance energy transfer (smFRET) experiment shows compaction of M3/M4 loop towards the pore upon phosphorylation, and further compaction by 2, 6-DTBP. Our results reveal a localized interaction model where M3/M4 loop modulate GlyR function through physical proximation. This regulation mechanism should inform on pain medication development targeting GlyRs. Our strategy allowed investigation of how post-translational modification of an unstructured loop modulate channel conduction, which we anticipate will be applicable to intrinsically disordered loops ubiquitously found in ion channels.
α3β甘氨酸受体(GlyR)是甘氨酸受体的一种亚型,属于半胱氨酸环受体超家族。由于其在脊髓背角中的高表达以及在痛觉中的不可或缺的作用,它是开发非精神活性疼痛控制药物的一个靶点。α3β甘氨酸受体的活性通过前列腺素E2(PGE)途径在α3的大的内部M3/M4环中的磷酸化作用而受到抑制,而这种抑制作用可被一种小分子镇痛药2,6-二硫代苯并吡咯(2,6-DTBP)逆转。然而,磷酸化或2,6-DTBP的调节机制尚不清楚。在这里,我们展示了通过磷酸化和2,6-DTBP结合导致的M3/M4环压缩,这反过来又改变了局部环境并重新排列了离子传导孔的构象以调节α3β甘氨酸受体的活性。我们解析了有或没有磷酸化以及存在2,6-DTBP情况下的α3β甘氨酸受体与甘氨酸结合的结构,发现磷酸化后功能状态没有变化,但2,6-DTBP结合会导致转变为不对称的超开放孔。单分子荧光共振能量转移(smFRET)实验表明,磷酸化时M3/M4环向孔方向压缩,而2,6-DTBP会使其进一步压缩。我们的结果揭示了一种局部相互作用模型,即M3/M4环通过物理接近来调节甘氨酸受体的功能。这种调节机制应为针对甘氨酸受体的疼痛药物开发提供信息。我们的策略使得能够研究无结构环的翻译后修饰如何调节通道传导,我们预计这将适用于离子通道中普遍存在的内在无序环。