Pan Xiaofeng, Li Xiang, Wang Zhongkai, Ni Yonghao, Wang Qinhua
Anhui Provincial Engineering Center for High-Performance Biobased Nylon, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China.
National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, P.R. China.
ACS Nano. 2024 Sep 3;18(35):24095-24104. doi: 10.1021/acsnano.4c04078. Epub 2024 Aug 16.
Recently, certain challenges and accompanying drawbacks have emerged in the preparation of high-strength and tough polymer hydrogels. Insights from wood science highlight the role of the intertwined molecular structure of lignin and crystalline cellulose in contributing to wood's strength. Herein, we immersed prestretched poly(vinyl alcohol) (PVA) polymer hydrogels into a solution of nanosized lignosulfonate sodium (LS), a water-soluble anionic polyelectrolyte, to creatively reconstruct this similar structure at the molecular scale in hydrogels. The nanosized LS effectively fixed and bundled the prestretched PVA polymers while inducing the formation of dense crystalline domains within the polymer matrix. Consequently, the interwoven structure of crystalline PVA and LS conferred good strength to the composite hydrogels, exhibiting a tensile strength of up to ∼23 MPa, a fracture strain of ∼350%, Young's modulus of ∼17 MPa, toughness of ∼47 MJ/m, and fracture energy of ∼42 kJ/m. This hydrogel far outperformed previous hydrogels composed directly of lignin and PVA (tensile strength <1.5 MPa). Additionally, the composite hydrogels demonstrated excellent antifreezing properties (<-80 °C). Notably, the LS-assisted reconstruction technology offers opportunities for the secondary fixation of PVA hydrogel shapes and high-strength welding of hydrogel components. This work introduces an approach for the high-value utilization of LS, a green byproduct of pulp production. LS's profound biomimetic strategy will be applied in multifunctional hydrogel fields.
最近,在高强度和韧性聚合物水凝胶的制备过程中出现了一些挑战及随之而来的缺点。木材科学的见解突出了木质素和结晶纤维素的交织分子结构对木材强度的作用。在此,我们将预拉伸的聚乙烯醇(PVA)聚合物水凝胶浸入纳米级木质素磺酸钠(LS,一种水溶性阴离子聚电解质)溶液中,以在水凝胶的分子尺度上创造性地重建这种类似结构。纳米级LS有效地固定并捆绑了预拉伸的PVA聚合物,同时在聚合物基质中诱导形成致密的结晶域。因此,结晶PVA和LS的交织结构赋予了复合水凝胶良好的强度,其拉伸强度高达约23 MPa,断裂应变约为350%,杨氏模量约为17 MPa,韧性约为47 MJ/m,断裂能约为42 kJ/m。这种水凝胶的性能远远超过了以前直接由木质素和PVA组成的水凝胶(拉伸强度<1.5 MPa)。此外,复合水凝胶表现出优异的抗冻性能(<-80°C)。值得注意的是,LS辅助重建技术为PVA水凝胶形状的二次固定和水凝胶组件的高强度焊接提供了机会。这项工作介绍了一种对LS(纸浆生产的绿色副产品)进行高价值利用的方法。LS深刻的仿生策略将应用于多功能水凝胶领域。