Cui Pengcheng, Chen Jiadong, Fu Kewen, Deng Jie, Sun Taolin, Chen Kun, Yin Panchao
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510641, China.
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China.
ACS Appl Mater Interfaces. 2024 Oct 2;16(39):53022-53032. doi: 10.1021/acsami.4c13264. Epub 2024 Sep 22.
Impact-protective materials are gaining importance because of the widespread occurrence of impact damage. Hydrogels have emerged as promising candidates owing to their lightweight and flexible nature. However, achieving soft impact-resistant hydrogels with exceptional stiffness, strength, and toughness remains a challenge. Inspired by the Bouligand structure found in the smasher dactyl club of stomatopods, we propose a straightforward multiscale hierarchical structural design strategy. This strategy integrates self-assembly and salting-out techniques to enhance the impact resistance of soft hydrogels. Rigid cellulose nanocrystals (CNCs) self-assemble into Bouligand-like structures within soft poly(vinyl alcohol) (PVA) matrix via supramolecular interactions. This rational structural design combines the CNC Bouligand structure with a cross-linked network of soft PVA crystalline domains, resulting in a composite hydrogel with impressive mechanical properties: high tensile fracture strength (30.2 MPa), elastic modulus (62.7 MPa), and fracture energy (75.6 kJ m), surpassing those of other tough hydrogels. Moreover, the multiscale hierarchical structure facilitates various energy dissipation mechanisms, including crack twisting, tortuous crack paths, and PVA chain orientation, resulting in notable force attenuation (80.4%) in the composite hydrogel. This biomimetic design strategy opens new avenues for developing soft and lightweight impact-resistant materials.
由于冲击损伤的广泛存在,抗冲击材料正变得越来越重要。水凝胶因其轻质和柔性的特性而成为有前途的候选材料。然而,制备具有出色刚度、强度和韧性的柔软抗冲击水凝胶仍然是一个挑战。受口足类动物粉碎性指节棒中发现的布氏结构启发,我们提出了一种直接的多尺度分级结构设计策略。该策略整合了自组装和盐析技术,以提高柔软水凝胶的抗冲击性。刚性纤维素纳米晶体(CNC)通过超分子相互作用在柔软的聚乙烯醇(PVA)基质中自组装成类似布氏的结构。这种合理的结构设计将CNC布氏结构与柔软PVA结晶域的交联网络相结合,形成了一种具有令人印象深刻力学性能的复合水凝胶:高拉伸断裂强度(30.2 MPa)、弹性模量(62.7 MPa)和断裂能(75.6 kJ m),超过了其他坚韧水凝胶。此外,多尺度分级结构促进了各种能量耗散机制,包括裂纹扭曲、曲折的裂纹路径和PVA链取向,导致复合水凝胶中显著的力衰减(80.4%)。这种仿生设计策略为开发柔软且轻质的抗冲击材料开辟了新途径。