Suppr超能文献

普鲁士蓝基纳米酶“人工过氧化物酶”与底物的快速反应:准稳态动力学方法。

Fast Reaction of the Prussian Blue Based Nanozyme "Artificial Peroxidase" with the Substrates: Pre-Steady-State Kinetic Approach.

机构信息

Chemistry Faculty of M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russia.

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street 4, Moscow 119334, Russia.

出版信息

J Phys Chem Lett. 2024 Aug 29;15(34):8642-8649. doi: 10.1021/acs.jpclett.4c01545. Epub 2024 Aug 16.

Abstract

This letter introduces the pre-steady-state kinetic approach, which is traditional for evaluation of elementary constants in molecular (enzyme) catalysis, for nanozymes. Apparently, the most active peroxidase-mimicking nanozyme based on catalytically synthesized Prussian Blue nanoparticles has been chosen. The elementary constants () for the nanozymes' reduction by an electron-donor substrate (being the fastest stage according to steady-state kinetic data) have been determined by means of stopped-flow spectroscopy. These constants have been found to be dependent on both the size of the nanozyme and the reducing substrate redox potential. For the smallest nanozymes (32 nm in diameter), log() linearly decays with an increase of the substrate redox potential (cotangent value ≈125 mV). On the contrary, for the largest nanozymes with a diameter above 150 nm, is almost independent of it. Moreover, for the substrate with the lowest redox potential (K[Fe(CN)]), the rate constant under discussion () is almost independent of the nanozymes' size. Perhaps, the rate of the intrananozyme electron transfer causing bleaching becomes comparative or even lower than that of the nanoparticle interaction with the fastest substrate. Anyway, the elementary constant of nanozyme reduction with potassium ferrocyanide () reaches the value of 1 × 10 M s, which is 3-4 orders of magnitude faster than for enzymes peroxidases. The obtained results obviously demonstrate that the pre-steady-state kinetic approach is able to discover novel advantages of nanozymes from both fundamental and practical points of view.

摘要

这封信介绍了预稳态动力学方法,该方法常用于评估分子(酶)催化中的基本常数,也适用于纳米酶。显然,选择了基于催化合成的普鲁士蓝纳米粒子的最活跃的过氧化物酶模拟纳米酶。通过停流光谱法确定了纳米酶被电子供体底物还原的基本常数(根据稳态动力学数据,这是最快的阶段)。这些常数取决于纳米酶的大小和还原底物的氧化还原电位。对于最小的纳米酶(直径 32nm),log()随底物氧化还原电位的增加呈线性衰减(余切值≈125mV)。相反,对于直径超过 150nm 的最大纳米酶,几乎与其无关。此外,对于氧化还原电位最低的底物(K[Fe(CN)]),讨论的速率常数()几乎与纳米酶的大小无关。也许,导致漂白的纳米酶内电子转移的速率变得相当或甚至低于纳米粒子与最快底物的相互作用。无论如何,用亚铁氰化钾还原纳米酶的基本常数()达到 1×10 M s 的值,比酶过氧化物酶快 3-4 个数量级。所得结果显然表明,从基础和实际的角度来看,预稳态动力学方法能够发现纳米酶的新优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验