Xiong Tao, Li Yachao, Xing Mengdao
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10349-10361. doi: 10.1109/TPAMI.2024.3444910. Epub 2024 Nov 6.
When the locations of non-zero samples are known, the Moore-Penrose inverse (MPI) can be used for the data recovery of compressive sensing (CS). First, the prior from the locations is used to shrink the measurement matrix in CS. Then the data can be recovered by using MPI with such shrinking matrix. We can also prove that the results of data recovery from the original CS and our MPI-based method are the same mathematically. Based on such finding, a novel sidelobe-reduction method for synthetic aperture radar (SAR) and Polarimetric SAR (POLSAR) images is studied. The aim of sidelobe reduction is to recover the samples within the mainlobes and suppress the ones within the sidelobes. In our study, prior from spatial variant apodization (SVA) is used to determine the locations of the mainlobes and the sidelobes, respectively. With CS, the mainlobe area can be well recovered. Samples within the sidelobe areas are also recovered using background fusion. Our method is suitable for acquired data with large sizes. The performance of the proposed algorithm is evaluated with acquired space-borne SAR and air-borne POLSAR data. In our experiments, we use the [Formula: see text] space-borne SAR data with the size of 10000 (samples) × 10000 (samples) and [Formula: see text] POLSAR data with the size of 10000 (samples) × 26000 (samples) for sidelobe suppression. Furthermore, We also verified that, our method does not affect the polarization signatures. The effectiveness for the sidelobe suppression is qualitatively examined, and results were satisfactory.
当非零样本的位置已知时,摩尔-彭罗斯广义逆(MPI)可用于压缩感知(CS)的数据恢复。首先,利用位置信息的先验知识对CS中的测量矩阵进行收缩。然后,使用这种收缩后的矩阵通过MPI恢复数据。我们还可以证明,从原始CS和基于MPI的方法进行数据恢复的结果在数学上是相同的。基于这一发现,研究了一种用于合成孔径雷达(SAR)和极化合成孔径雷达(POLSAR)图像的新型旁瓣抑制方法。旁瓣抑制的目的是恢复主瓣内的样本并抑制旁瓣内的样本。在我们的研究中,分别利用空间变迹(SVA)的先验知识来确定主瓣和旁瓣的位置。利用CS,可以很好地恢复主瓣区域。旁瓣区域内的样本也通过背景融合进行恢复。我们的方法适用于处理大尺寸的采集数据。利用采集到的星载SAR和机载POLSAR数据对所提算法的性能进行了评估。在我们的实验中,使用大小为10000(样本)×10000(样本)的[公式:见原文]星载SAR数据和大小为10000(样本)×26000(样本)的[公式:见原文]POLSAR数据进行旁瓣抑制。此外,我们还验证了我们的方法不会影响极化特征。对旁瓣抑制的有效性进行了定性检验,结果令人满意。