Suppr超能文献

基于压缩感知的汽车调频连续波雷达系统中稀疏雷达传感器数据采集的合成孔径雷达图像重建

Compressive Sensing-Based SAR Image Reconstruction from Sparse Radar Sensor Data Acquisition in Automotive FMCW Radar System.

作者信息

Lee Seongwook, Jung Yunho, Lee Myeongjin, Lee Wookyung

机构信息

School of Electronics and Information Engineering, College of Engineering, Korea Aerospace University, Deogyang-gu, Goyang-si 10540, Gyeonggi-do, Korea.

出版信息

Sensors (Basel). 2021 Nov 1;21(21):7283. doi: 10.3390/s21217283.

Abstract

In this paper, we propose a method for reconstructing synthetic aperture radar (SAR) images by applying a compressive sensing (CS) technique to sparsely acquired radar sensor data. In general, SAR image reconstruction algorithms require radar sensor data acquired at regular spatial intervals. However, when the speed of the radar-equipped platform is not constant, it is difficult to consistently perform regular data acquisitions. Therefore, we used the CS-based signal recovery method to efficiently reconstruct SAR images even when regular data acquisition was not performed. In the proposed method, we used the l1-norm minimization to overcome the non-uniform data acquisition problem, which replaced the Fourier transform and inverse Fourier transform in the conventional SAR image reconstruction method. In addition, to reduce the phase distortion of the recovered signal, the proposed method was applied to each of the in-phase and quadrature components of the acquired radar sensor data. To evaluate the performance of the proposed method, we conducted experiments using an automotive frequency-modulated continuous wave radar sensor. Then, the quality of the SAR image reconstructed with data acquired at regular intervals was compared with the quality of images reconstructed with data acquired at non-uniform intervals. Using the proposed method, even if only 70% of the regularly acquired radar sensor data was used, a SAR image having a correlation of 0.83 could be reconstructed.

摘要

在本文中,我们提出了一种通过将压缩感知(CS)技术应用于稀疏采集的雷达传感器数据来重建合成孔径雷达(SAR)图像的方法。一般来说,SAR图像重建算法需要以规则的空间间隔采集雷达传感器数据。然而,当配备雷达的平台速度不恒定时,很难持续进行规则的数据采集。因此,即使没有进行规则的数据采集,我们也使用基于CS的信号恢复方法来有效地重建SAR图像。在所提出的方法中,我们使用l1范数最小化来克服非均匀数据采集问题,这取代了传统SAR图像重建方法中的傅里叶变换和逆傅里叶变换。此外,为了减少恢复信号的相位失真,将所提出的方法应用于采集的雷达传感器数据的同相分量和正交分量。为了评估所提出方法的性能,我们使用汽车调频连续波雷达传感器进行了实验。然后,将以规则间隔采集的数据重建的SAR图像质量与以非均匀间隔采集的数据重建的图像质量进行了比较。使用所提出的方法,即使仅使用70%的规则采集的雷达传感器数据,也可以重建相关性为0.83的SAR图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a799/8587560/324bd5597e16/sensors-21-07283-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验