Wang Yafei, Goh Bonita, Nelaturu Phalgun, Duong Thien, Hassan Najlaa, David Raphaelle, Moorehead Michael, Chaudhuri Santanu, Creuziger Adam, Hattrick-Simpers Jason, Thoma Dan J, Sridharan Kumar, Couet Adrien
Department of Engineering Physics, University of Wisconsin, Madison, WI, 53706, USA.
Applied Materials Division, Argonne National Laboratory, Lemont, IL, 60607, USA.
Adv Sci (Weinh). 2022 Jul;9(20):e2200370. doi: 10.1002/advs.202200370. Epub 2022 May 7.
Insufficient availability of molten salt corrosion-resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here an integrated approach is presented using a set of high-throughput (HTP) alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of CrFeMnNi alloys are evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion-resistant alloy development can be accelerated by 2 to 3 orders of magnitude. Based on the obtained results, a sacrificial protection mechanism is unveiled in the corrosion of CrFeMnNi alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high-temperature molten salt corrosion-resistant alloys.
熔盐耐腐蚀合金的可用性不足严重限制了各种有前景的熔盐技术的实现,否则这些技术可能会对社会产生重大影响。为了加速用于熔盐应用的合金开发,并深入了解这些环境中的腐蚀情况,本文提出了一种综合方法,该方法使用了一套高通量(HTP)合金合成、腐蚀测试和建模,并结合自动表征和机器学习。通过使用这种方法,同时评估了多种CrFeMnNi合金在熔盐中的耐腐蚀性,结果表明耐腐蚀合金的开发速度可加快2至3个数量级。基于所得结果,揭示了CrFeMnNi合金在熔盐腐蚀中的牺牲保护机制,该机制可用于保护合金中较不稳定的元素不被耗尽,并为高温熔盐耐腐蚀合金的设计提供了新的见解。