Case Western Reserve School of Medicine, Cleveland, OH.
Fox Chase Cancer Center, Philadelphia, PA.
JCO Precis Oncol. 2024 Aug;8:e2300661. doi: 10.1200/PO.23.00661.
The purpose of this study was to elucidate the relationship between the tumor microenvironment (TME) and cellular diversity in bladder cancer (BLCA) progression, leveraging single-cell RNA sequencing (scRNA-seq) data to identify potential prognostic biomarkers and construct a prognostic model for BLCA.
We analyzed scRNA-seq data of normal and tumor bladder cells from the Gene Expression Omnibus (GEO) database to uncover crucial markers within the bladder TME. The study compared gene expression in normal versus tumor bladder cells, identifying differentially expressed genes. These genes were subsequently assessed for their prognostic significance using patient follow-up data from The Cancer Genome Atlas. Prognostic models were constructed using Least Absolute Shrinkage and Selection Operator and multivariate Cox regression analyses, focusing on eight genes of interest. The predictive performance of the model was also tested against additional GEO data sets (GSE31684, GSE13507, and GSE32894).
The prognostic model demonstrated reliable prediction of patient outcomes. Validation through gene set enrichment analysis and immune cell infiltration assessment supported the model's efficacy. The results from both the univariate and multivariate analyses suggest that the risk score is an independent prognostic factor with a hazard ratio of 2.97 (95% CI, 2.28 to 3.9, < .001). In the validation cohort, the AUC at 1, 2, and 3 years is 0.74, 0.74, and 0.72, respectively.
Our findings proposed biomarkers with prognostic potential, laying the groundwork for future in vitro validation and therapeutic exploration. This contributes to a deeper understanding of the genes associated with bladder TME and may improve prognostic precision in BLCA management.
本研究旨在阐明膀胱癌(BLCA)进展过程中肿瘤微环境(TME)与细胞多样性之间的关系,利用单细胞 RNA 测序(scRNA-seq)数据鉴定潜在的预后生物标志物,并构建 BLCA 的预后模型。
我们分析了来自基因表达综合数据库(GEO)的正常和肿瘤膀胱细胞的 scRNA-seq 数据,以揭示膀胱 TME 中的关键标志物。该研究比较了正常与肿瘤膀胱细胞中的基因表达,鉴定出差异表达的基因。随后使用癌症基因组图谱(TCGA)的患者随访数据评估这些基因的预后意义。使用最小绝对收缩和选择算子(LASSO)和多变量 Cox 回归分析构建预后模型,重点关注八个感兴趣的基因。还使用来自其他 GEO 数据集(GSE31684、GSE13507 和 GSE32894)对模型的预测性能进行了测试。
该预后模型能够可靠地预测患者的结局。基因集富集分析和免疫细胞浸润评估的验证支持了该模型的有效性。单因素和多因素分析的结果均表明,风险评分是一个独立的预后因素,风险比为 2.97(95%CI,2.28 至 3.9,<0.001)。在验证队列中,1、2 和 3 年的 AUC 分别为 0.74、0.74 和 0.72。
我们的研究结果提出了具有预后潜力的生物标志物,为未来的体外验证和治疗探索奠定了基础。这有助于深入了解与膀胱 TME 相关的基因,并可能提高 BLCA 管理的预后准确性。