Suppr超能文献

生物炭改良对 CO 浓度升高条件下生长的菠菜(Spinacia oleracea L.)中细菌群落及其养分获取作用的影响。

Effect of biochar amendment on bacterial community and their role in nutrient acquisition in spinach (Spinacia oleracea L.) grown under elevated CO.

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.

School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland and Labrador, Corner Brook A2H 5G4, Newfoundland, Canada.

出版信息

Chemosphere. 2024 Sep;364:143098. doi: 10.1016/j.chemosphere.2024.143098. Epub 2024 Aug 14.

Abstract

Global climate change is anticipated to shift the soil bacterial community structure and plant nutrient utilization. The use of biochar amendment can positively influence soil bacterial community structure, soil properties, and nutrient use efficiency of crops. However, little is known about the underlying mechanism and response of bacterial community structure to biochar amendment, and its role in nutrient enhancement in soil and plants under elevated CO. Herein, the effect of biochar amendment (0, 0.5, 1.5%) on soil bacterial community structure, spinach growth, physiology, and soil and plant nutrient status were investigated under two CO concentrations (400 and 600 μmol mol). Findings showed that biochar application 1.5% (B.2.E) significantly increased the abundance of the bacterial community responsible for growth and nutrient uptake i.e. Firmicutes (42.25%) Bacteroidetes (10.46%), and Gemmatimonadetes (125.75%) as compared to respective control (CK.E) but interestingly abundance of proteobacteria decreased (9.18%) under elevated CO. Furthermore, the soil available N, P, and K showed a significant increase in higher biochar-amended treatments under elevated CO Spinach plants exhibited a notable enhancement in growth and photosynthetic pigments when exposed to elevated CO levels and biochar, as compared to ambient CO conditions. However, there was variability observed in the leaf gas exchange attributes. Elevated CO reduced spinach roots and leaves nutrient concentration. In contrast, the biochar amendment (B2.E) enhanced root and shoot Zinc (494.99%-155.33%), magnesium (261.15%-183.37%), manganese (80.04%-152.86%), potassium (576.24%-355.17%), calcium (261.88%-165.65%), copper (325.42%-282.53%) and iron (717.63%-177.90%) concentration by influencing plant physiology and bacterial community. These findings provide insights into the interaction between plant and bacterial community under future agroecosystems in response to the addition of biochar contributing to a deeper understanding of ecological dynamics.

摘要

全球气候变化预计会改变土壤细菌群落结构和植物养分利用。生物炭改良的使用可以积极影响土壤细菌群落结构、土壤特性以及作物的养分利用效率。然而,对于细菌群落结构对生物炭改良的响应机制及其在增强土壤和植物养分方面的作用,我们知之甚少,尤其是在高浓度 CO 下。本文研究了生物炭改良(0、0.5、1.5%)对土壤细菌群落结构、菠菜生长、生理以及土壤和植物养分状况的影响,在两种 CO 浓度(400 和 600 μmol mol)下进行。研究结果表明,与各自对照(CK.E)相比,生物炭 1.5%(B.2.E)的应用显著增加了负责生长和养分吸收的细菌群落的丰度,即厚壁菌门(42.25%)、拟杆菌门(10.46%)和芽单胞菌门(125.75%),而有趣的是,在高浓度 CO 下,变形菌门的丰度下降(9.18%)。此外,土壤中有效氮、磷和钾在高生物炭改良处理下在高 CO 条件下显著增加。菠菜植株在暴露于高 CO 水平和生物炭时表现出明显的生长和光合色素增强,与环境 CO 条件相比。然而,叶片气体交换特性存在可变性。高浓度 CO 降低了菠菜根和叶的养分浓度。相比之下,生物炭改良(B2.E)增强了根和茎叶锌(494.99%-155.33%)、镁(261.15%-183.37%)、锰(80.04%-152.86%)、钾(576.24%-355.17%)、钙(261.88%-165.65%)、铜(325.42%-282.53%)和铁(717.63%-177.90%)的浓度,从而影响植物生理和细菌群落。这些发现为了解在未来农业生态系统中植物和细菌群落之间的相互作用提供了新的见解,有助于更深入地了解生态动态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验