Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Campus Duffel (UPCD), Rooienberg 19, 2570 Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Campus Drie Eiken, S.003, Universiteitsplein 1, 2610 Wilrijk, Belgium.
Scientific Initiative for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Campus Duffel (UPCD), Rooienberg 19, 2570 Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Campus Drie Eiken, S.003, Universiteitsplein 1, 2610 Wilrijk, Belgium.
Brain Behav Immun. 2024 Nov;122:422-432. doi: 10.1016/j.bbi.2024.08.013. Epub 2024 Aug 14.
Schizophrenia and bipolar disorder frequently face significant delay in diagnosis, leading to being missed or misdiagnosed in early stages. Both disorders have also been associated with trait and state immune abnormalities. Recent machine learning-based studies have shown encouraging results using diagnostic biomarkers in predictive models, but few have focused on immune-based markers. Our main objective was to develop supervised machine learning models to predict diagnosis and illness state in schizophrenia and bipolar disorder using only a panel of peripheral kynurenine metabolites and cytokines.
The cross-sectional I-GIVE cohort included hospitalized acute bipolar patients (n = 205), stable bipolar outpatients (n = 116), hospitalized acute schizophrenia patients (n = 111), stable schizophrenia outpatients (n = 75) and healthy controls (n = 185). Serum kynurenine metabolites, namely tryptophan (TRP), kynurenine (KYN), kynurenic acid (KA), quinaldic acid (QUINA), xanthurenic acid (XA), quinolinic acid (QUINO) and picolinic acid (PICO) were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS), while V-plex Human Cytokine Assays were used to measure cytokines (interleukin-6 (IL-6), IL-8, IL-17, IL-12/IL23-P40, tumor necrosis factor-alpha (TNF-ɑ), interferon-gamma (IFN-γ)). Supervised machine learning models were performed using JMP Pro 17.0.0. We compared a primary analysis using nested cross-validation to a split set as sensitivity analysis. Post-hoc, we re-ran the models using only the significant features to obtain the key markers.
The models yielded a good Area Under the Curve (AUC) (0.804, Positive Prediction Value (PPV) = 86.95; Negative Prediction Value (NPV) = 54.61) for distinguishing all patients from controls. This implies that a positive test is highly accurate in identifying the patients, but a negative test is inconclusive. Both schizophrenia patients and bipolar patients could each be separated from controls with a good accuracy (SCZ AUC 0.824; BD AUC 0.802). Overall, increased levels of IL-6, TNF-ɑ and PICO and decreased levels of IFN-γ and QUINO were predictive for an individual being classified as a patient. Classification of acute versus stable patients reached a fair AUC of 0.713. The differentiation between schizophrenia and bipolar disorder yielded a poor AUC of 0.627.
This study highlights the potential of using immune-based measures to build predictive classification models in schizophrenia and bipolar disorder, with IL-6, TNF-ɑ, IFN-γ, QUINO and PICO as key candidates. While machine learning models successfully distinguished schizophrenia and bipolar disorder from controls, the challenges in differentiating schizophrenic from bipolar patients likely reflect shared immunological pathways by the both disorders and confounding by a larger state-specific effect. Larger multi-centric studies and multi-domain models are needed to enhance reliability and translation into clinic.
精神分裂症和双相情感障碍经常面临诊断的显著延迟,导致在早期阶段被漏诊或误诊。这两种疾病也与特质和状态免疫异常有关。最近基于机器学习的研究使用预测模型中的诊断生物标志物显示出令人鼓舞的结果,但很少有研究关注基于免疫的标志物。我们的主要目标是开发有监督的机器学习模型,仅使用外周犬尿氨酸代谢物和细胞因子的面板来预测精神分裂症和双相情感障碍的诊断和疾病状态。
横断面 I-GIVE 队列包括住院急性双相情感障碍患者(n=205)、稳定的双相情感障碍门诊患者(n=116)、住院急性精神分裂症患者(n=111)、稳定的精神分裂症门诊患者(n=75)和健康对照组(n=185)。使用液相色谱-串联质谱法(LC-MS/MS)定量血清犬尿氨酸代谢物,即色氨酸(TRP)、犬尿氨酸(KYN)、犬尿氨酸酸(KA)、喹哪酸(QUINA)、黄尿酸(XA)、喹啉酸(QUINO)和吡啶甲酸(PICO),而 V-plex 人类细胞因子测定法用于测量细胞因子(白细胞介素-6(IL-6)、白细胞介素-8(IL-8)、白细胞介素-17(IL-17)、白细胞介素-12/白细胞介素 23-P40(IL-12/IL23-P40)、肿瘤坏死因子-α(TNF-ɑ)、干扰素-γ(IFN-γ))。使用 JMP Pro 17.0.0 进行有监督的机器学习模型。我们比较了使用嵌套交叉验证的主要分析和作为敏感性分析的拆分集。事后,我们重新使用仅显著特征的模型,以获得关键标记物。
该模型在区分所有患者和对照组方面产生了良好的曲线下面积(AUC)(0.804,阳性预测值(PPV)=86.95;阴性预测值(NPV)=54.61)。这意味着阳性测试在识别患者方面非常准确,但阴性测试则不确定。精神分裂症患者和双相情感障碍患者均可以与对照组很好地区分开(SCZ AUC 0.824;BD AUC 0.802)。总体而言,白细胞介素-6、肿瘤坏死因子-α和吡啶甲酸水平升高以及干扰素-γ和喹啉酸水平降低与个体被归类为患者有关。急性与稳定患者的分类达到了公平的 AUC 0.713。精神分裂症和双相情感障碍的区分产生了较差的 AUC 0.627。
本研究强调了使用基于免疫的措施构建精神分裂症和双相情感障碍预测分类模型的潜力,白细胞介素-6、肿瘤坏死因子-α、干扰素-γ、喹啉酸和吡啶甲酸是关键候选物。虽然机器学习模型成功地区分了精神分裂症和双相情感障碍与对照组,但在区分精神分裂症患者和双相情感障碍患者方面的挑战可能反映了这两种疾病共同的免疫途径和更大的特定状态效应的混杂。需要更大的多中心研究和多域模型来提高可靠性并转化为临床应用。