Suppr超能文献

由人工智能驱动的RNA编辑特征:区分精神分裂症、双相情感障碍和分裂情感性障碍的新前沿。

RNA Editing Signatures Powered by Artificial Intelligence: A New Frontier in Differentiating Schizophrenia, Bipolar, and Schizoaffective Disorders.

作者信息

Checa-Robles Francisco J, Salvetat Nicolas, Cayzac Christopher, Menhem Mary, Favier Mathieu, Vetter Diana, Ouna Ilhème, Nani João V, Hayashi Mirian A F, Brietzke Elisa, Weissmann Dinah

机构信息

ALCEDIAG, Parc Euromédecine, 34184 Montpellier Cedex 4, France.

Sys2Diag, UMR 9005 CNRS/ALCEN, Parc Euromédecine, 34184 Montpellier Cedex 4, France.

出版信息

Int J Mol Sci. 2024 Dec 3;25(23):12981. doi: 10.3390/ijms252312981.

Abstract

Mental health disorders are devastating illnesses, often misdiagnosed due to overlapping clinical symptoms. Among these conditions, bipolar disorder, schizophrenia, and schizoaffective disorder are particularly difficult to distinguish, as they share alternating positive and negative mood symptoms. Accurate and timely diagnosis of these diseases is crucial to ensure effective treatment and to tailor therapeutic management to each individual patient. In this context, it is essential to move beyond standard clinical assessment and employ innovative approaches to identify new biomarkers that can be reliably quantified. We previously identified a panel of RNA editing biomarkers capable of differentiating healthy controls from depressed patients and, among depressed patients, those with major depressive disorder and those with bipolar disorder. In this study, we integrated Adenosine-to-Inosine RNA editing blood biomarkers with clinical data through machine learning algorithms to establish specific signatures for bipolar disorder and schizophrenia spectrum disorders. This groundbreaking study paves the way for the application of RNA editing in other psychiatric disorders, such as schizophrenia and schizoaffective disorder. It represents a first proof-of-concept and provides compelling evidence for the establishment of an RNA editing signature for the diagnosis of these psychiatric conditions.

摘要

精神健康障碍是极具破坏性的疾病,常因临床症状重叠而被误诊。在这些疾病中,双相情感障碍、精神分裂症和分裂情感性障碍尤其难以区分,因为它们都有交替出现的正负性情绪症状。准确及时地诊断这些疾病对于确保有效治疗以及为每个患者量身定制治疗方案至关重要。在这种情况下,必须超越标准的临床评估,采用创新方法来识别能够可靠量化的新生物标志物。我们之前鉴定出一组RNA编辑生物标志物,能够区分健康对照与抑郁症患者,以及抑郁症患者中的重度抑郁症患者和双相情感障碍患者。在本研究中,我们通过机器学习算法将腺苷到肌苷的RNA编辑血液生物标志物与临床数据相结合,以建立双相情感障碍和精神分裂症谱系障碍的特定特征。这项开创性的研究为RNA编辑在其他精神疾病(如精神分裂症和分裂情感性障碍)中的应用铺平了道路。它代表了首个概念验证,并为建立用于诊断这些精神疾病的RNA编辑特征提供了令人信服的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b2a/11641080/534dc3390595/ijms-25-12981-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验