Suppr超能文献

用于评估造血细胞移植中 HLA-DQ 异二聚体变异的工具。

A Tool for the Assessment of HLA-DQ Heterodimer Variation in Hematopoietic Cell Transplantation.

机构信息

CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP(SM), Minneapolis, Minnesota.

CIBMTR® (Center for International Blood and Marrow Transplant Research), NMDP(SM), Minneapolis, Minnesota.

出版信息

Transplant Cell Ther. 2024 Nov;30(11):1084.e1-1084.e15. doi: 10.1016/j.jtct.2024.08.006. Epub 2024 Aug 15.

Abstract

When optimizing transplants, clinical decision-makers consider HLA-A, -B, -C, -DRB1 (8 matched alleles out of 8), and sometimes HLA-DQB1 (10 out of 10) matching between the patient and donor. HLA-DQ is a heterodimer formed by the β chain product of HLA-DQB1 and an α chain product of HLA-DQA1. In addition to molecules defined by the parentally inherited cis haplotypes, α-β trans-dimerization is possible between certain alleles, leading to unique molecules and a potential source of mismatched molecules. Recently, researchers uncovered that clinical outcome after HLA-DQB1-mismatched unrelated donor HCT depends on the total number of HLA-DQ molecule mismatches and the specific α-β heterodimer mismatch. Our objective in this study is to develop an automated tool for analyzing HLA-DQ heterodimer data and validating it through numerous datasets and analyses. By doing so, we provide an HLA-DQ heterodimer tool for DQα-DQβ trans-heterodimer evaluation, HLA-DQ imputation, and HLA-DQ-featured source selection to the transplant field. In our study, we leverage 352,148 high-confidence, statistically phased (via a modified expectation-maximization algorithm) HLA-DRB1∼DQA1∼DQB1 haplotypes, 1,052 pedigree-phased HLA-DQA1∼DQB1 haplotypes, and 13,663 historical transplants to characterize HLA-DQ heterodimers data. Using our developed QLASSy (HLA-DQA1 and HLA-DQB1 Heterodimers Assessment) tool, we first assessed the data quality of HLA-DQ heterodimers in our data for trans-dimers, missing HLA-DQA1 typing, and unexpected HLA-DQA1 and HLA-DQB1 combinations. Since trans-dimers enable up to four unique HLA-DQ molecules in individuals, we provide in-silico validations for 99.7% of 275 unique trans-dimers generated by 176,074 U.S. donors with HLA-DQA1 and HLA-DQB1 data. Many individuals lack HLA-DQA1 typing, so we developed and validated high-confidence HLA-DQ annotation imputation via HLA-DRB1 with >99% correct predictions in 23,698 individuals. A select few individuals displayed unexpected HLA-DQ combinations. We revisited the typing of 61 donors with unexpected HLA-DQ combinations based on their HLA-DQA1 and HLA-DQB1 typing and corrected 22 out of 61 (36%) cases of donors through data review or retyping and used imputation to resolve unexpected combinations. After verifying the data quality of our datasets, we analyzed our datasets further: we explored the frequencies of observed HLA-DQ combinations to compare HLA-DQ across populations (for instance, we found more high-risk molecules in Asian/Pacific Islander and Black/African American populations), demonstrated the effect of HLA-DQA1 and HLA-DQB1 mismatching on HLA-DQ molecular mismatches, and highlighted where donor selections could be improved at the time of search for historical transplants with this new HLA-DQ information (where 51.9% of G2-mismatched transplants had lower-risk, G2-matched alternatives). We encapsulated our findings into a tool that imputes missing HLA-DQA1 as needed, annotates HLA-DQ (mis)matches, and highlights other important HLA-DQ data to consider for the present and future. Altogether, these valuable datasets, analyses, and a culminating tool serve as actionable resources to enhance donor selection and improve patient outcomes.

摘要

在优化移植时,临床决策者会考虑患者和供体之间 HLA-A、-B、-C、-DRB1(8 个匹配等位基因中的 8 个)和 HLA-DQB1(10 个匹配等位基因中的 10 个)的匹配情况。HLA-DQ 是由 HLA-DQB1 的β链产物和 HLA-DQA1 的α链产物形成的异二聚体。除了由亲本遗传的顺式单倍型定义的分子外,某些等位基因之间还可能发生 α-β 转二聚化,从而产生独特的分子和潜在的错配分子来源。最近,研究人员发现 HLA-DQB1 错配无关供体 HCT 后的临床结果取决于 HLA-DQ 分子错配的总数和特定的 α-β 异二聚体错配。我们的目标是开发一种自动工具来分析 HLA-DQ 异二聚体数据,并通过大量数据集和分析对其进行验证。通过这样做,我们为移植领域提供了一种 HLA-DQ 异二聚体工具,用于 DQα-DQβ 转异二聚体评估、HLA-DQ 推测和 HLA-DQ 特征源选择。在我们的研究中,我们利用了 352,148 个高置信度、统计相位(通过修改后的期望最大化算法)的 HLA-DRB1∼DQA1∼DQB1 单倍型、1,052 个系谱相位 HLA-DQA1∼DQB1 单倍型和 13,663 个历史移植来描述 HLA-DQ 异二聚体数据。使用我们开发的 QLASSy(HLA-DQA1 和 HLA-DQB1 异二聚体评估)工具,我们首先评估了我们数据中 HLA-DQ 异二聚体的 trans-dimers、HLA-DQA1 分型缺失和意外 HLA-DQA1 和 HLA-DQB1 组合的数据质量。由于 trans-dimers 使个体中最多产生四个独特的 HLA-DQ 分子,我们通过对 176,074 名美国供体的 275 个独特 trans-dimers 进行了 in-silico 验证,其中 99.7%的 HLA-DQ 分子都是有效的。许多个体缺乏 HLA-DQA1 分型,因此我们开发并验证了通过 HLA-DRB1 进行高可信度 HLA-DQ 注释推测的方法,在 23,698 名个体中,有超过 99%的预测结果是正确的。少数个体显示出意外的 HLA-DQ 组合。我们根据他们的 HLA-DQA1 和 HLA-DQB1 分型重新检查了 61 名具有意外 HLA-DQ 组合的供体的分型,并通过数据审查或重新分型纠正了其中 22 名供体(36%)的错误,并使用推测解决了意外组合的问题。在验证了我们数据集的数据质量后,我们进一步分析了数据集:我们比较了不同人群中的 HLA-DQ 组合,探索了观察到的 HLA-DQ 组合的频率(例如,我们在亚洲/太平洋岛民和黑人和非洲裔美国人中发现了更多的高危分子),展示了 HLA-DQA1 和 HLA-DQB1 错配对 HLA-DQ 分子错配的影响,并突出了在搜索具有这种新 HLA-DQ 信息的历史移植时可以改进供体选择的地方(51.9%的 G2 错配移植有风险较低的 G2 匹配替代方案)。我们将这些发现封装在一个工具中,该工具可以根据需要推测缺失的 HLA-DQA1,注释 HLA-DQ(错配),并突出显示当前和未来需要考虑的其他重要 HLA-DQ 数据。总的来说,这些有价值的数据集、分析和最终工具为增强供体选择和改善患者预后提供了可操作的资源。

相似文献

本文引用的文献

8
Use of the HLA-B leader to optimize cord blood transplantation.利用 HLA-B 启动子优化脐血移植。
Haematologica. 2021 Dec 1;106(12):3107-3114. doi: 10.3324/haematol.2020.264424.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验