Suppr超能文献

多糖介导的绿色合成更小的银纳米粒子,增强抗菌和抗生物膜活性。

Polysaccharide-Mediated Green Synthesis of Smaller Silver Nanoparticles with Enhanced Antimicrobial and Antibiofilm Activity.

机构信息

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 28;16(34):45289-45306. doi: 10.1021/acsami.4c07770. Epub 2024 Aug 17.

Abstract

Silver nanoparticles (AgNPs) have attracted widespread attention in multidrug-resistant bacterial infections. However, the application of AgNPs synthesized by conventional methods is restricted by its high costs, toxicity, and poor stability. Herein, a water-soluble polysaccharide ( polysaccharide, SBP) rich in reducing sugars was used as both the reductant and stabilizer to greenly synthesize spherical AgNPs@SBP with smaller particle sizes (11.18 ± 2.50 nm) and higher negative zeta potential (-23.05 ± 2.76 mV), which was favorable to enhance its antimicrobial activity and improve pH and thermal stability. Besides, SBP facilitated the adhesion and penetration of AgNPs@SBP to methicillin-resistant (MRSA) and carbapenem-resistant (CREC), thus significantly enhancing its antibacterial activity (increased by 32-fold and 64-fold, respectively). Likewise, AgNPs@SBP at a low concentration (7.8 μg/mL) could effectively penetrate and inhibit nearly 90% of MRSA and CREC biofilm formation. Antimicrobial mechanism studies showed that AgNPs@SBP could lead to more severe cell membrane damage and genetic material leakage by upregulating reactive oxygen species and depolarizing mitochondrial membrane potential, ultimately resulting in the apoptosis of bacteria. Overall, the wrapping of SBP significantly enhanced the antibacterial and antibiofilm activity of AgNPs, which possessed great potential in the prevention and treatment of multidrug-resistant bacterial infections.

摘要

银纳米粒子(AgNPs)在耐多药细菌感染中引起了广泛关注。然而,传统方法合成的 AgNPs 的应用受到其高成本、毒性和较差的稳定性的限制。在此,我们使用富含还原糖的水溶性多糖(多糖,SBP)作为还原剂和稳定剂,绿色合成了具有更小粒径(11.18 ± 2.50nm)和更高负 zeta 电位(-23.05 ± 2.76mV)的球形 AgNPs@SBP,这有利于增强其抗菌活性并提高 pH 值和热稳定性。此外,SBP 有助于 AgNPs@SBP 黏附和穿透耐甲氧西林金黄色葡萄球菌(MRSA)和耐碳青霉烯肠杆菌科(CREC),从而显著增强其抗菌活性(分别提高了 32 倍和 64 倍)。同样,AgNPs@SBP 在低浓度(7.8μg/mL)下也能有效穿透并抑制近 90%的 MRSA 和 CREC 生物膜形成。抗菌机制研究表明,AgNPs@SBP 通过上调活性氧和去极化线粒体膜电位,导致更严重的细胞膜损伤和遗传物质泄漏,最终导致细菌凋亡。总之,SBP 的包裹显著增强了 AgNPs 的抗菌和抗生物膜活性,在预防和治疗耐多药细菌感染方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验