Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
Carbohydr Res. 2024 Oct;544:109241. doi: 10.1016/j.carres.2024.109241. Epub 2024 Aug 13.
Legume lectins are a diverse family of carbohydrate-binding proteins that share significant similarities in their primary, secondary, and tertiary structures, yet exhibit remarkable variability in their quaternary structures and carbohydrate-binding specificities. The tertiary structure of legume lectins, characterized by a conserved β-sandwich fold, provides the scaffold for the formation of a carbohydrate-recognition domain (CRD) responsible for ligand binding. The structural basis for the binding is similar between members of the family, with key residues interacting with the sugar through hydrogen bonds, hydrophobic interactions, and van der Waals forces. Variability in substructures and residues within the CRD are responsible for the large array of specificities and enable legume lectins to recognize diverse sugar structures, while maintaining a consistent structural fold. Therefore, legume lectins can be classified into several specificity groups based on their preferred ligands, including mannose/glucose-specific, N-acetyl-d-galactosamine/galactose-specific, N-acetyl-d-glucosamine-specific, l-fucose-specific, and α-2,3 sialic acid-specific lectins. In this context, this review examined the structural aspects and carbohydrate-binding properties of representative legume lectins and their specific ligands in detail. Understanding the structure/binding relationships of lectins continues to provide valuable insights into their biological roles, while also assisting in the potential applications of these proteins in glycobiology, diagnostics, and therapeutics.
豆科植物凝集素是一类具有多样性的糖结合蛋白,它们在一级、二级和三级结构上具有显著的相似性,但在四级结构和糖结合特异性上表现出显著的可变性。豆科植物凝集素的三级结构,以保守的β-三明治折叠为特征,为形成负责配体结合的碳水化合物识别域(CRD)提供了支架。家族成员之间的结合结构基础相似,关键残基通过氢键、疏水相互作用和范德华力与糖相互作用。CRD 内的亚结构和残基的变异性是特异性多样性的原因,使豆科植物凝集素能够识别多种不同的糖结构,同时保持一致的结构折叠。因此,豆科植物凝集素可以根据其偏好的配体分为几个特异性组,包括甘露糖/葡萄糖特异性、N-乙酰-d-半乳糖胺/半乳糖特异性、N-乙酰-d-葡萄糖胺特异性、岩藻糖特异性和α-2,3 唾液酸特异性凝集素。在这种情况下,本文详细研究了代表性豆科植物凝集素及其特定配体的结构方面和碳水化合物结合特性。对凝集素的结构/结合关系的理解不断为其生物学功能提供有价值的见解,同时也有助于这些蛋白质在糖生物学、诊断和治疗中的潜在应用。