Suppr超能文献

ERT-GFAN:一种基于分子生物学和知识增强注意力机制的多模态药物-靶标相互作用预测模型。

ERT-GFAN: A multimodal drug-target interaction prediction model based on molecular biology and knowledge-enhanced attention mechanism.

机构信息

College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.

College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China; School of Automation, Qingdao University, Qingdao, 266071, China.

出版信息

Comput Biol Med. 2024 Sep;180:109012. doi: 10.1016/j.compbiomed.2024.109012. Epub 2024 Aug 16.

Abstract

In drug discovery, precisely identifying drug-target interactions is crucial for finding new drugs and understanding drug mechanisms. Evolving drug/target heterogeneous data presents challenges in obtaining multimodal representation in drug-target prediction(DTI). To deal with this, we propose 'ERT-GFAN', a multimodal drug-target interaction prediction model inspired by molecular biology. Firstly, it integrates bio-inspired principles to obtain structure feature of drugs and targets using Extended Connectivity Fingerprints(ECFP). Simultaneously, the knowledge graph embedding model RotatE is employed to discover the interaction feature of drug-target pairs. Subsequently, Transformer is utilized to refine the contextual neighborhood features from the obtained structure feature and interaction features, and multi-modal high-dimensional fusion features of the three-modal information constructed. Finally, the final DTI prediction results are outputted by integrating the multimodal fusion features into a graphical high-dimensional fusion feature attention network (GFAN) using our innovative multimodal high-dimensional fusion feature attention. This multimodal approach offers a comprehensive understanding of drug-target interactions, addressing challenges in complex knowledge graphs. By combining structure feature, interaction feature, and contextual neighborhood features, 'ERT-GFAN' excels in predicting DTI. Empirical evaluations on three datasets demonstrate our method's superior performance, with AUC of 0.9739, 0.9862, and 0.9667, AUPR of 0.9598, 0.9789, and 0.9750, and Mean Reciprocal Rank(MRR) of 0.7386, 0.7035, and 0.7133. Ablation studies show over a 5% improvement in predictive performance compared to baseline unimodal and bimodal models. These results, along with detailed case studies, highlight the efficacy and robustness of our approach.

摘要

在药物发现中,精确识别药物-靶标相互作用对于寻找新药和理解药物机制至关重要。不断发展的药物/靶标异质数据在药物-靶标预测(DTI)中获得多模态表示方面带来了挑战。为了解决这个问题,我们提出了“ERT-GFAN”,这是一种受分子生物学启发的多模态药物-靶标相互作用预测模型。首先,它集成了生物启发的原理,使用扩展连接指纹(ECFP)获取药物和靶标的结构特征。同时,使用知识图嵌入模型 RotatE 发现药物-靶对的相互作用特征。随后,Transformer 用于从获得的结构特征和相互作用特征中细化上下文邻域特征,并构建三模态信息的多模态高维融合特征。最后,通过将多模态融合特征集成到图形高维融合特征注意力网络(GFAN)中,使用我们创新的多模态高维融合特征注意力来输出最终的 DTI 预测结果。这种多模态方法提供了对药物-靶标相互作用的全面理解,解决了复杂知识图中的挑战。通过结合结构特征、相互作用特征和上下文邻域特征,“ERT-GFAN”在预测 DTI 方面表现出色。在三个数据集上的实证评估表明,我们的方法具有优越的性能,AUC 分别为 0.9739、0.9862 和 0.9667,AUPR 分别为 0.9598、0.9789 和 0.9750,MRR 分别为 0.7386、0.7035 和 0.7133。消融研究表明,与基线单模态和双模态模型相比,预测性能提高了 5%以上。这些结果以及详细的案例研究突出了我们方法的有效性和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验