Suppr超能文献

掩模移位推理:一种新颖的领域泛化范例。

Mask-Shift-Inference: A novel paradigm for domain generalization.

机构信息

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao Shandong 266061, China.

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao Shandong 266061, China; Qingdao Institute of Intelligent Navigation and Control, Qingdao Shandong 266071, China.

出版信息

Neural Netw. 2024 Nov;179:106629. doi: 10.1016/j.neunet.2024.106629. Epub 2024 Aug 12.

Abstract

Domain Generalization (DG) focuses on the Out-Of-Distribution (OOD) generalization, which is able to learn a robust model that generalizes the knowledge acquired from the source domain to the unseen target domain. However, due to the existence of the domain shift, domain-invariant representation learning is challenging. Guided by fine-grained knowledge, we propose a novel paradigm Mask-Shift-Inference (MSI) for DG based on the architecture of Convolutional Neural Networks (CNN). Different from relying on a series of constraints and assumptions for model optimization, this paradigm novelly shifts the focus to feature channels in the latent space for domain-invariant representation learning. We put forward a two-branch working mode of a main module and multiple domain-specific sub-modules. The latter can only achieve good prediction performance in its own specific domain but poor predictions in other source domains, which provides the main module with the fine-grained knowledge guidance and contributes to the improvement of the cognitive ability of MSI. Firstly, during the forward propagation of the main module, the proposed MSI accurately discards unstable channels based on spurious classifications varying across domains, which have domain-specific prediction limitations and are not conducive to generalization. In this process, a progressive scheme is adopted to adaptively increase the masking ratio according to the training progress to further reduce the risk of overfitting. Subsequently, our paradigm enters the compatible shifting stage before the formal prediction. Based on maximizing semantic retention, we implement the domain style matching and shifting through the simple transformation through Fourier transform, which can explicitly and safely shift the target domain back to the source domain whose style is closest to it, requiring no additional model updates and reducing the domain gap. Eventually, the paradigm MSI enters the formal inference stage. The updated target domain is predicted in the main module trained in the previous stage with the benefit of familiar knowledge from the nearest source domain masking scheme. Our paradigm is logically progressive, which can intuitively exclude the confounding influence of domain-specific spurious information along with mitigating domain shifts and implicitly perform semantically invariant representation learning, achieving robust OOD generalization. Extensive experimental results on PACS, VLCS, Office-Home and DomainNet datasets verify the superiority and effectiveness of the proposed method.

摘要

域泛化 (DG) 专注于离群 (OOD) 泛化,它能够学习一个稳健的模型,将从源域获得的知识推广到未见过的目标域。然而,由于存在域转移,域不变表示学习具有挑战性。受细粒度知识的指导,我们提出了一种基于卷积神经网络 (CNN) 架构的新的域泛化范例——掩模移位推理 (MSI)。与依赖于一系列约束和假设来优化模型不同,该范例新颖地将重点转移到潜在空间中的特征通道上,以进行域不变表示学习。我们提出了一个主模块和多个特定领域子模块的双分支工作模式。后者只能在其自己的特定领域中实现良好的预测性能,但在其他源域中的预测效果较差,这为主模块提供了细粒度的知识指导,有助于提高 MSI 的认知能力。首先,在主模块的正向传播过程中,我们提出的 MSI 基于跨域变化的虚假分类准确地丢弃不稳定的通道,这些通道具有特定领域的预测局限性,不利于泛化。在此过程中,采用渐进式方案根据训练进度自适应地增加掩蔽比,以进一步降低过拟合的风险。随后,我们的范例在正式预测之前进入兼容移位阶段。基于最大限度地保留语义,我们通过傅里叶变换的简单变换来实现域风格匹配和移位,可以显式且安全地将目标域转移回与其风格最接近的源域,无需额外的模型更新,减少域差距。最终,范例 MSI 进入正式推断阶段。在前一阶段训练的主模块中预测更新后的目标域,受益于来自最近源域掩蔽方案的熟悉知识。我们的范例是逻辑上渐进的,可以直观地排除特定领域虚假信息的混杂影响,同时缓解域转移,并隐式地进行语义不变表示学习,实现稳健的 OOD 泛化。在 PACS、VLCS、Office-Home 和 DomainNet 数据集上的广泛实验结果验证了所提出方法的优越性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验