School of Information Science and Technology, Northwest University, Xi'an, 710127, China.
Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
Methods. 2023 Oct;218:149-157. doi: 10.1016/j.ymeth.2023.08.003. Epub 2023 Aug 10.
Deep convolutional neural networks (DCNNs) have shown remarkable performance in medical image segmentation tasks. However, medical images frequently exhibit distribution discrepancies due to variations in scanner vendors, operators, and image quality, which pose significant challenges to the robustness of trained models when applied to unseen clinical data. To address this issue, domain generalization methods have been developed to enhance the generalization ability of DCNNs. Feature space-based data augmentation methods have been proven effective in improving domain generalization, but they often rely on prior knowledge or assumptions, which can limit the diversity of source domain data. In this study, we propose a novel random feature augmentation (RFA) method to diversify source domain data at the feature level without prior knowledge. Specifically, our RFA method perturbs domain-specific information while preserving domain-invariant information, thereby adequately diversifying the source domain data. Furthermore, we propose a dual-branches invariant synergistic learning strategy to capture domain-invariant information from the augmented features of RFA, enabling DCNNs to learn a more generalized representation. We evaluate our proposed method on two challenging medical image segmentation tasks, optic cup/disc segmentation on fundus images and prostate segmentation on MRI images. Extensive experimental results demonstrate the superior performance of our method over state-of-the-art domain generalization methods.
深度卷积神经网络(DCNN)在医学图像分割任务中表现出了卓越的性能。然而,由于扫描仪供应商、操作人员和图像质量的差异,医学图像经常存在分布差异,这给应用于未见临床数据的训练模型的鲁棒性带来了重大挑战。为了解决这个问题,已经开发了领域泛化方法来增强 DCNN 的泛化能力。基于特征空间的数据增强方法已被证明在提高领域泛化方面非常有效,但它们通常依赖于先验知识或假设,这可能会限制源域数据的多样性。在这项研究中,我们提出了一种新颖的随机特征增强(RFA)方法,无需先验知识即可在特征级别上多样化源域数据。具体来说,我们的 RFA 方法在保留域不变信息的同时扰乱特定于域的信息,从而充分多样化源域数据。此外,我们提出了一种双分支不变协同学习策略,从 RFA 的增强特征中捕获域不变信息,使 DCNN 能够学习更具泛化性的表示。我们在两个具有挑战性的医学图像分割任务上评估了我们的方法,即眼底图像的视杯/视盘分割和 MRI 图像的前列腺分割。广泛的实验结果表明,我们的方法优于最先进的领域泛化方法。