College of Life Science, China West Normal University, Nanchong 637009, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
MOE Key Laboratory of Pollution Processes and Environmental Criteria / Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Environ Pollut. 2024 Oct 15;359:124753. doi: 10.1016/j.envpol.2024.124753. Epub 2024 Aug 15.
The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.
混合微塑料(MPs)在厌氧废水处理过程中的存在已被证明会通过抑制微生物活性来阻碍发酵性能。微生物电合成(MES)具有广泛的潜力,为难处理物质的管理和甲烷回收提供了有前途的解决方案,这是通过增强微生物代谢和种间电子转移来实现的。因此,本研究深入探讨了 MES 在修复混合 MPs 污染废水过程中的功能影响和微生物响应。结果表明,混合 MPs 可以抑制甲烷的产生(-52.38%)和物质的去除(-26.59%),而 MES 可以有效地减轻这种抑制作用(-22.86%,-19.01%)。同时,MES 还能促进与电子转移相关的酶活性,如细胞色素 c 和烟酰胺腺嘌呤二核苷酸(NADH),以及与能量代谢相关的酶活性,如三磷酸腺苷(ATP)。此外,MES 增强了微生物对混合 MPs 的抗性,这表现在细胞外多聚物(EPS)的增加,尽管活性氧(ROS)的产生和乳酸脱氢酶(LDH)的释放略有增加。相应地,电刺激促进了与发酵、乙酸产生、电生成和甲烷生成相关的功能微生物的富集,并刺激了与甲烷代谢相关的基因表达水平的提高。值得注意的是,甲烷丝菌介导的乙酰化途径成为主要的产甲烷途径,其次是甲烷杆菌驱动的氢营养型途径。最后,该研究强调了外加电压和载体在能量代谢和物质运输中的支持作用,这些作用与产甲烷作用有关。总体而言,MES 证明在减轻混合 MPs 暴露引起的生物毒性以及增强厌氧废水处理和甲烷回收方面是有效的。