Suppr超能文献

一种考虑环境干扰的锂离子电池可解释容量预测方法。

An interpretable capacity prediction method for lithium-ion battery considering environmental interference.

作者信息

Yang Zijiang, Zhang Hongquan

机构信息

College of Electronic Engineering, Heilongjiang University, Harbin, 150080, China.

Heilongjiang Agricultural Engineering Vocational College, Harbin, 150088, China.

出版信息

Sci Rep. 2024 Aug 17;14(1):19110. doi: 10.1038/s41598-024-68886-7.

Abstract

Predicting the capacity of lithium-ion battery (LIB) plays a crucial role in ensuring the safe operation of LIBs and prolonging their lifespan. However, LIBs are easily affected by environmental interference, which may impact the precision of predictions. Furthermore, interpretability in the process of predicting LIB capacity is also important for users to understand the model, identify issues, and make decisions. In this study, an interpretable method considering environmental interference (IM-EI) for predicting LIB capacity is introduced. Spearman correlation coefficients, interpretability principles, belief rule base (BRB), and interpretability constraints are used to improve the prediction precision and interpretability of IM-EI. Dynamic attribute reliability is introduced to minimize the effect of environmental interference. The experimental results show that IM-EI model has good interpretability and high precision compared to the other models. Under interference conditions, the model still has good precision and robustness.

摘要

预测锂离子电池(LIB)的容量对于确保锂离子电池的安全运行和延长其使用寿命起着至关重要的作用。然而,锂离子电池很容易受到环境干扰的影响,这可能会影响预测的精度。此外,预测锂离子电池容量过程中的可解释性对于用户理解模型、识别问题和做出决策也很重要。在本研究中,引入了一种考虑环境干扰的可解释方法(IM-EI)来预测锂离子电池容量。使用斯皮尔曼相关系数、可解释性原则、置信规则库(BRB)和可解释性约束来提高IM-EI的预测精度和可解释性。引入动态属性可靠性以最小化环境干扰的影响。实验结果表明,与其他模型相比,IM-EI模型具有良好的可解释性和高精度。在干扰条件下,该模型仍具有良好的精度和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f399/11330511/ae9967e904a7/41598_2024_68886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验