Tang Pei, Qiu Zetao, Yao Zhongran, Pan Jiahao, Cheng Dashuai, Gu Xiaoyong, Sun Changcheng
School of Automotive Engineering, Yancheng Institute of Technology, Yanchen, 224051, China.
School of Automobile and Traffic Engineering, Wuxi Institute of Technology, Wuxi, 214121, China.
Sci Rep. 2025 Jul 23;15(1):26824. doi: 10.1038/s41598-025-11934-7.
Accurate prediction of lithium-ion batteries' remaining useful life (RUL) is critical for system reliability and safety. This study proposes a novel forecasting framework that fuses modal decomposition with the advanced PatchTST model. Initially, the Spearman correlation coefficient is employed to identify features strongly associated with battery capacity. The Variational Mode Decomposition (VMD) method is then used to break down the raw capacity sequence into a set of intrinsic mode functions. To enhance decomposition quality, the Whale Optimization Algorithm (WOA) optimizes the number of modes K and penalty factor α by minimizing mean envelope entropy. The selected features and decomposed components are subsequently input into a PatchTST network, whose hyperparameters are tuned via the Sparrow Search Algorithm (SSA), to predict battery RUL. Experimental validation on the NASA Battery dataset and NASA Randomized Battery Usage Dataset demonstrates that the proposed WOA-VMD-SSA-PatchTST model consistently outperforms baseline models, including CNN, GRU and PatchTST, achieving superior prediction accuracy and robustness.
准确预测锂离子电池的剩余使用寿命(RUL)对于系统可靠性和安全性至关重要。本研究提出了一种新颖的预测框架,该框架将模态分解与先进的PatchTST模型相结合。首先,使用斯皮尔曼相关系数来识别与电池容量密切相关的特征。然后采用变分模态分解(VMD)方法将原始容量序列分解为一组本征模态函数。为了提高分解质量,鲸鱼优化算法(WOA)通过最小化平均包络熵来优化模态数K和惩罚因子α。随后,将所选特征和分解后的分量输入到PatchTST网络中,该网络的超参数通过麻雀搜索算法(SSA)进行调整,以预测电池的RUL。在NASA电池数据集和NASA随机电池使用数据集上的实验验证表明,所提出的WOA-VMD-SSA-PatchTST模型始终优于包括CNN、GRU和PatchTST在内的基线模型,具有卓越的预测准确性和鲁棒性。