Suppr超能文献

基于界面工程的NiCoMoO/TiCT MXene异质结构用于高性能柔性超级电容器。

Interface engineering based NiCoMoO/TiCT MXene heterostructure for high-performance flexible supercapacitors.

作者信息

Li Wei, Farhadi Bita, Liu Miaomiao, Wang Peiru, Wang Jiayi, Zhang Yaoyao, Ma Guoxiang, Huang Runnan, Zhao Jiayi, Wang Kai, Tong Yao

机构信息

Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.

Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt B):541-550. doi: 10.1016/j.jcis.2024.08.093. Epub 2024 Aug 13.

Abstract

The advancement of interface engineering has demonstrated remarkable efficacy in overcoming the primary impediment associated with sluggish reaction kinetics in supercapacitor electrodes. In this investigation, we employed a facile co-precipitation method to synthesize NiCoMoO/MXene heterostructures utilizing TiCT MXene nanosheets as carriers. This heterostructure inhibits the restacking of MXene nanosheets and simultaneously enhances the exposure of electrochemically active sites in NiCoMoO nanorods, thereby mitigating the reduction in specific capacitance resulting from volumetric fluctuations. The NiCoMoO/MXene electrode, possessing pseudo-capacitance properties, demonstrates an impressive level of specific capacitance, exceptional performance across various charging rates, and consistent behavior throughout repeated cycles. By optimizing the mass ratio, this electrode achieves a specific capacity of 1900 F/g under a current density of 1 A/g. Even after enduring 10,000 cycles at a significantly higher current density of 5 A/g, it still maintains an impressive retention rate of 94.73 %. Our density functional theory (DFT) calculations indicate that the enhanced electrochemical performance can be attributed to the improved electronic coupling within the NiCoMoO/MXene heterostructure. The integration of NiCoMoO/MXene cathode and activated carbon (AC) anode with an alkaline gel electrolyte containing potassium ferricyanide in flexible quasi-solid-state supercapacitors (FSSCs) results in exceptional electrochemical performance and flexibility. These FSSCs demonstrate a maximum energy density of 72.89 Wh kg at a power density of 850 W kg, while maintaining an impressive power output of 16,780 W kg with an energy density of 37.28 Wh kg. Based on these outstanding properties, it is evident that the NiCoMoO/MXene heterojunction possesses significant advantages as electrode material for supercapacitors, and the fabricated FSSCs devices pave a new pathway for flexible electronic devices.

摘要

界面工程的进展在克服与超级电容器电极中缓慢反应动力学相关的主要障碍方面已显示出显著成效。在本研究中,我们采用简便的共沉淀法,以TiCT MXene纳米片为载体合成NiCoMoO/MXene异质结构。这种异质结构抑制了MXene纳米片的重新堆叠,同时增加了NiCoMoO纳米棒中电化学活性位点的暴露,从而减轻了体积波动导致的比电容降低。具有赝电容特性的NiCoMoO/MXene电极展现出令人印象深刻的比电容水平、在各种充电速率下的卓越性能以及在重复循环过程中的稳定行为。通过优化质量比,该电极在1 A/g的电流密度下实现了1900 F/g的比容量。即使在5 A/g的更高电流密度下经受10000次循环后,它仍保持着94.73%的惊人保留率。我们的密度泛函理论(DFT)计算表明,增强的电化学性能可归因于NiCoMoO/MXene异质结构中改善的电子耦合。将NiCoMoO/MXene阴极和活性炭(AC)阳极与含有铁氰化钾的碱性凝胶电解质集成到柔性准固态超级电容器(FSSC)中,可实现卓越的电化学性能和柔韧性。这些FSSC在850 W/kg的功率密度下展现出72.89 Wh/kg的最大能量密度,同时在37.28 Wh/kg的能量密度下保持着16780 W/kg的令人印象深刻的功率输出。基于这些优异性能,显然NiCoMoO/MXene异质结作为超级电容器的电极材料具有显著优势,并且所制备的FSSC器件为柔性电子器件开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验