Suppr超能文献

探索通才模型和专业模型之间的权衡取舍:基于中心的胶质母细胞瘤分割的对比分析。

Exploring the Trade-Off between generalist and specialized Models: A center-based comparative analysis for glioblastoma segmentation.

机构信息

Biomedical Data Science Laboratory, ITACA Institute, Universitat Politècnica de València, València, Spain.

Departament d'Enginyeria Industrial i Construcció, Àrea d'Enginyeria Agroforestal, Universitat de les Illes Balears, Palma, Spain.

出版信息

Int J Med Inform. 2024 Nov;191:105604. doi: 10.1016/j.ijmedinf.2024.105604. Epub 2024 Aug 15.

Abstract

INTRODUCTION

Inherent variations between inter-center data can undermine the robustness of segmentation models when applied at a specific center (dataset shift). We investigated whether specialized center-specific models are more effective compared to generalist models based on multi-center data, and how center-specific data could enhance the performance of generalist models within a particular center using a fine-tuning transfer learning approach. For this purpose, we studied the dataset shift at center level and conducted a comparative analysis to assess the impact of data source on glioblastoma segmentation models.

METHODS & MATERIALS: The three key components of dataset shift were studied: prior probability shift-variations in tumor size or tissue distribution among centers; covariate shift-inter-center MRI alterations; and concept shift-different criteria for tumor segmentation. BraTS 2021 dataset was used, which includes 1251 cases from 23 centers. Thereafter, 155 deep-learning models were developed and compared, including 1) generalist models trained with multi-center data, 2) specialized models using only center-specific data, and 3) fine-tuned generalist models using center-specific data.

RESULTS

The three key components of dataset shift were characterized. The amount of covariate shift was substantial, indicating large variations in MR imaging between different centers. Glioblastoma segmentation models tend to perform best when using data from the application center. Generalist models, trained with over 700 samples, achieved a median Dice score of 88.98%. Specialized models surpassed this with 200 cases, while fine-tuned models outperformed with 50 cases.

CONCLUSIONS

The influence of dataset shift on model performance is evident. Fine-tuned and specialized models, utilizing data from the evaluated center, outperform generalist models, which rely on data from other centers. These approaches could encourage medical centers to develop customized models for their local use, enhancing the accuracy and reliability of glioblastoma segmentation in a context where dataset shift is inevitable.

摘要

简介

当应用于特定中心(数据集转移)时,中心间数据固有的差异可能会降低分割模型的稳健性。我们研究了专门针对特定中心的模型是否比基于多中心数据的通用模型更有效,以及如何使用微调迁移学习方法利用特定中心的中心特定数据来提高通用模型的性能。为此,我们研究了中心层面的数据集转移,并进行了比较分析,以评估数据源对胶质母细胞瘤分割模型的影响。

方法与材料

研究了数据集转移的三个关键组成部分:先验概率转移-中心间肿瘤大小或组织分布的变化;协变量转移-中心间 MRI 变化;和概念转移-肿瘤分割的不同标准。使用了 BraTS 2021 数据集,其中包括来自 23 个中心的 1251 例病例。此后,开发并比较了 155 个深度学习模型,包括 1)使用多中心数据训练的通用模型,2)仅使用中心特定数据的专用模型,以及 3)使用中心特定数据微调的通用模型。

结果

描述了数据集转移的三个关键组成部分。协变量转移的量很大,表明不同中心之间的磁共振成像有很大的变化。当使用应用中心的数据时,胶质母细胞瘤分割模型的性能往往最佳。使用超过 700 个样本训练的通用模型的平均 Dice 评分为 88.98%。专用模型使用 200 个病例超过了这一水平,而微调模型使用 50 个病例表现更好。

结论

数据集转移对模型性能的影响是明显的。使用评估中心的数据微调的和专用的模型优于依赖其他中心数据的通用模型。这些方法可以鼓励医疗中心为其本地使用开发定制模型,在数据集转移不可避免的情况下,提高胶质母细胞瘤分割的准确性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验