Suppr超能文献

重新利用公共 BraTS 数据集进行术后脑瘤治疗反应监测。

Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring.

机构信息

Department of Radiology, Centre of Diagnostic Investigation, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark.

出版信息

Tomography. 2024 Sep 1;10(9):1397-1410. doi: 10.3390/tomography10090105.

Abstract

The Brain Tumor Segmentation (BraTS) Challenge has been a main driver of the development of deep learning (DL) algorithms and provides by far the largest publicly available expert-annotated brain tumour dataset but contains solely preoperative examinations. The aim of our study was to facilitate the use of the BraTS dataset for training DL brain tumour segmentation algorithms for a postoperative setting. To this end, we introduced an automatic conversion of the three-label BraTS annotation protocol to a two-label annotation protocol suitable for postoperative brain tumour segmentation. To assess the viability of the label conversion, we trained a DL algorithm using both the three-label and the two-label annotation protocols. We assessed the models pre- and postoperatively and compared the performance with a state-of-the-art DL method. The DL algorithm trained using the BraTS three-label annotation misclassified parts of 10 out of 41 fluid-filled resection cavities in 72 postoperative glioblastoma MRIs, whereas the two-label model showed no such inaccuracies. The tumour segmentation performance of the two-label model both pre- and postoperatively was comparable to that of a state-of-the-art algorithm for tumour volumes larger than 1 cm. Our study enables using the BraTS dataset as a basis for the training of DL algorithms for postoperative tumour segmentation.

摘要

脑肿瘤分割(BraTS)挑战赛一直是深度学习(DL)算法发展的主要驱动力,提供了迄今为止最大的公开可用的专家注释脑肿瘤数据集,但仅包含术前检查。我们的研究旨在促进使用 BraTS 数据集来训练用于术后环境的 DL 脑肿瘤分割算法。为此,我们引入了一种自动将三标签 BraTS 注释协议转换为适用于术后脑肿瘤分割的两标签注释协议的方法。为了评估标签转换的可行性,我们使用三标签和两标签注释协议训练了一个 DL 算法。我们在术前和术后评估了这些模型,并将其性能与最先进的 DL 方法进行了比较。使用 BraTS 三标签注释训练的 DL 算法错误地分类了 72 例术后胶质母细胞瘤 MRI 中 41 例充满液体的切除腔中的 10 个部分,而两标签模型则没有这种不准确的情况。两标签模型在术前和术后的肿瘤分割性能与肿瘤体积大于 1cm 的最先进算法相当。我们的研究使使用 BraTS 数据集作为训练用于术后肿瘤分割的 DL 算法的基础成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab7/11436089/7859d223313b/tomography-10-00105-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验