Biomedical Imaging Research Group (GIBI230), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain.
Department of Radiology, Hospital Universitario y Politécnico de La Fe, Valencia, Spain.
Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1743-1751. doi: 10.1007/s11548-024-03205-z. Epub 2024 Jun 7.
In patients having naïve glioblastoma multiforme (GBM), this study aims to assess the efficacy of Deep Learning algorithms in automating the segmentation of brain magnetic resonance (MR) images to accurately determine 3D masks for 4 distinct regions: enhanced tumor, peritumoral edema, non-enhanced/necrotic tumor, and total tumor.
A 3D U-Net neural network algorithm was developed for semantic segmentation of GBM. The training dataset was manually delineated by a group of expert neuroradiologists on MR images from the Brain Tumor Segmentation Challenge 2021 (BraTS2021) image repository, as ground truth labels for diverse glioma (GBM and low-grade glioma) subregions across four MR sequences (T1w, T1w-contrast enhanced, T2w, and FLAIR) in 1251 patients. The in-house test was performed on 50 GBM patients from our cohort (PerProGlio project). By exploring various hyperparameters, the network's performance was optimized, and the most optimal parameter configuration was identified. The assessment of the optimized network's performance utilized Dice scores, precision, and sensitivity metrics.
Our adaptation of the 3D U-net with additional residual blocks demonstrated reliable performance on both the BraTS2021 dataset and the in-house PerProGlio cohort, employing only T1w-ce sequences for enhancement and non-enhanced/necrotic tumor models and T1w-ce + T2w + FLAIR for peritumoral edema and total tumor. The mean Dice scores (training and test) were 0.89 and 0.75; 0.75 and 0.64; 0.79 and 0.71; and 0.60 and 0.55, for total tumor, edema, enhanced tumor, and non-enhanced/necrotic tumor, respectively.
The results underscore the high precision with which our network can effectively segment GBM tumors and their distinct subregions. The level of accuracy achieved agrees with the coefficients recorded in previous GBM studies. In particular, our approach allows model specialization for each of the different tumor subregions employing only those MR sequences that provide value for segmentation.
在初诊多形性胶质母细胞瘤(GBM)患者中,本研究旨在评估深度学习算法在自动分割脑磁共振(MR)图像以准确确定 4 个不同区域的 3D 掩模方面的功效:增强肿瘤、瘤周水肿、非增强/坏死肿瘤和总肿瘤。
开发了一种用于 GBM 语义分割的 3D U-Net 神经网络算法。训练数据集由一组神经放射科专家在来自 Brain Tumor Segmentation Challenge 2021(BraTS2021)图像库的 MR 图像上手动描绘,作为来自四个 MR 序列(T1w、T1w-增强、T2w 和 FLAIR)的不同神经胶质瘤(GBM 和低级别胶质瘤)亚区的地面真实标签在 1251 名患者中。内部测试是在我们队列中的 50 名 GBM 患者(PerProGlio 项目)上进行的。通过探索各种超参数,优化了网络的性能,并确定了最佳参数配置。优化网络性能的评估采用了 Dice 分数、精度和灵敏度指标。
我们对 3D U-Net 进行了调整,增加了残差块,在 BraTS2021 数据集和内部 PerProGlio 队列中都表现出可靠的性能,仅使用 T1w-ce 序列进行增强和非增强/坏死肿瘤模型,以及 T1w-ce+T2w+FLAIR 用于瘤周水肿和总肿瘤。平均 Dice 分数(训练和测试)分别为 0.89 和 0.75;0.75 和 0.64;0.79 和 0.71;0.60 和 0.55,用于总肿瘤、水肿、增强肿瘤和非增强/坏死肿瘤。
这些结果强调了我们的网络可以非常精确地分割 GBM 肿瘤及其不同的亚区。所达到的准确性水平与之前 GBM 研究中记录的系数一致。特别是,我们的方法允许为每个不同的肿瘤亚区专门化模型,仅使用对分割有价值的那些 MR 序列。