Blue Marble Space Institute of Science, Seattle, WA, USA.
Blue Marble Space Institute of Science, Seattle, WA, USA; Department of Computer Engineering, University of Mumbai, MH, India.
Biosystems. 2024 Oct;244:105297. doi: 10.1016/j.biosystems.2024.105297. Epub 2024 Aug 20.
Symbolic systems (SSs) are uniquely products of living systems, such that symbolism and life may be inextricably intertwined phenomena. Within a given SS, there is a range of symbol complexity over which signaling is functionally optimized. This range exists relative to a complex and potentially infinitely large background of latent, unused symbol space. Understanding how symbol sets sample this latent space is relevant to diverse fields including biochemistry and linguistics. We quantitatively explored the graphic complexity of two biosemiotic systems: genetically encoded amino acids (GEAAs) and written language. Molecular and graphical notions of complexity are highly correlated for GEAAs and written language. Symbol sets are generally neither minimally nor maximally complex relative to their latent spaces, but exist across an objectively definable distribution, with the GEAAs having especially low complexity. The selection pressures guiding these disparate systems are explicable by symbol production and disambiguation efficiency. These selection pressures may be universal, offer a quantifiable metric for comparison, and suggest that all life in the Universe may discover optimal symbol set complexity distributions with respect to their latent spaces. If so, the "complexity" of individual components of SSs may not be as strong a biomarker as symbol set complexity distribution.
符号系统 (SSs) 是生命系统的独特产物,因此符号和生命可能是不可分割的交织现象。在给定的 SS 中,存在一个信号功能优化的符号复杂度范围。该范围相对于潜在的、未使用的符号空间的复杂且潜在无限大的背景存在。了解符号集如何在这个潜在空间中抽样对于包括生物化学和语言学在内的多个领域都很重要。我们定量研究了两种生物符号系统的图形复杂度:遗传编码的氨基酸 (GEAAs) 和书面语言。对于 GEAAs 和书面语言,分子和图形复杂度概念高度相关。相对于它们的潜在空间,符号集通常不是最小化的也不是最大化的,而是存在于客观定义的分布中,GEAAs 的复杂度特别低。指导这些不同系统的选择压力可以通过符号生成和去歧义效率来解释。这些选择压力可能是普遍存在的,提供了一个可量化的比较指标,并表明宇宙中的所有生命可能都能发现相对于其潜在空间的最佳符号集复杂度分布。如果是这样,那么 SS 中各个组件的“复杂度”可能不如符号集复杂度分布那样是一个强有力的生物标志物。