Suppr超能文献

氧化钨@聚苯胺复合材料中用于高容量水相储铵的配位和氢键化学

Coordination and Hydrogen Bond Chemistry in Tungsten Oxide@Polyaniline Composite toward High-Capacity Aqueous Ammonium Storage.

作者信息

Mao Shuai, Han Xu, Huang Zi-Hang, Li Hui, Ma Tianyi

机构信息

Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China.

Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, China.

出版信息

Small. 2024 Dec;20(51):e2405592. doi: 10.1002/smll.202405592. Epub 2024 Aug 18.

Abstract

Aqueous ammonium ion batteries (AAIBs) have garnered significant attention due to their unique energy storage mechanism. However, their progress is hindered by the relatively low capacities of NH host materials. Herein, the study proposes an electrodeposited tungsten oxide@polyaniline (WO@PANI) composite electrode as a NH host, which achieves an ultrahigh capacity of 280.3 mAh g at 1 A g, surpassing the vast majority of previously reported NH host materials. The synergistic interaction of coordination chemistry and hydrogen bond chemistry between the WO and PANI enhances the charge storage capacity. Experimental results indicate that the strong interfacial coordination bonding (N: →W) effectively modulates the chemical environment of W atoms, enhances the protonation level of PANI, and thus consequently the conductivity and stability of the composites. Spectroscopy analysis further reveals a unique NH /H co-insertion mechanism, in which the interfacial hydrogen bond network (N-H···O) accelerates proton involvement in the energy storage process and activates the Grotthuss hopping conduction of H between the hydrated tungsten oxide layers. This work opens a new avenue to achieving high-capacity NH storage through interfacial chemistry interactions, overcoming the capacity limitations of NH host materials for aqueous energy storage.

摘要

水系铵离子电池(AAIBs)因其独特的储能机制而备受关注。然而,NH₄⁺主体材料相对较低的容量阻碍了它们的发展。在此,该研究提出一种电沉积氧化钨@聚苯胺(WO₃@PANI)复合电极作为NH₄⁺主体,在1 A g⁻¹电流密度下实现了280.3 mAh g⁻¹的超高容量,超过了绝大多数先前报道的NH₄⁺主体材料。WO₃与PANI之间的配位化学和氢键化学的协同相互作用提高了电荷存储容量。实验结果表明,强界面配位键(N:→W)有效地调节了W原子的化学环境,提高了PANI的质子化水平,从而提高了复合材料的导电性和稳定性。光谱分析进一步揭示了一种独特的NH₄⁺/H⁺共嵌入机制,其中界面氢键网络(N-H···O)加速了质子参与储能过程,并激活了水合氧化钨层间H⁺的Grotthuss跳跃传导。这项工作为通过界面化学相互作用实现高容量NH₄⁺存储开辟了一条新途径,克服了水系储能中NH₄⁺主体材料的容量限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c79/11657061/b6ccefe5088d/SMLL-20-2405592-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验