Tang Xinlei, Zhang Shuyan, Sun Haohao, Zhang Haode, Jian Zelang, Hu Shan, Chen Wen
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Small. 2025 Jan;21(4):e2410374. doi: 10.1002/smll.202410374. Epub 2024 Nov 28.
Aqueous ammonium-ion batteries (AAIBs) are promising candidates for next-generation energy storage devices. However, organic materials as suitable anodes face severe challenges due to their structural instability and poor conductivity, which hinder the development of AAIBs. Herein, an innovative approach is introduced by incorporating an organic benzoquinone framework, 5,7,11,14-tetraaza-6,13-pentacenequinone (TAPQ), with reduced graphene oxide (rGO) using a solvent exchange method. Benefiting from π-π interaction and electron delocalization, TAPQ/rGO features enhanced cycling stability and ion/electron transportation. Consequently, the composite electrode delivers a reversible capacity of 181.7 mAh g at 0.5 A g and achieves an ultrahigh capacity retention of 94.5% over 10 000 cycles at 5 A g, surpassing most reported anodes in AAIBs. Combining density functional theory (DFT) calculation and ex situ electrochemical characterizations, the unique storage mechanism of chelation coordination between NH and N, O is revealed. Furthermore, a high-performance NH -based full cell, assembled with TAPQ/rGO anode and copper hexacyanoferrate (Cu-HCF) cathode, demonstrates long-term cycling stability with 93.95% capacity retention after 500 cycles. This work pioneers the concept of π-π interactions to significantly improve NH storage performance, presenting a novel strategy for the advancement of AAIBs research.
水系铵离子电池(AAIBs)是下一代储能装置的有前景的候选者。然而,有机材料作为合适的负极面临着严峻挑战,因为它们的结构不稳定且导电性差,这阻碍了AAIBs的发展。在此,通过使用溶剂交换法将有机苯醌骨架5,7,11,14 - 四氮杂 - 6,13 - 并五苯醌(TAPQ)与还原氧化石墨烯(rGO)结合,引入了一种创新方法。得益于π - π相互作用和电子离域,TAPQ/rGO具有增强的循环稳定性和离子/电子传输性能。因此,复合电极在0.5 A g下具有181.7 mAh g的可逆容量,并且在5 A g下10000次循环中实现了94.5%的超高容量保持率,超过了AAIBs中大多数已报道的负极。结合密度泛函理论(DFT)计算和非原位电化学表征,揭示了NH 与N、O之间螯合配位的独特存储机制。此外,用TAPQ/rGO负极和六氰合铁酸铜(Cu - HCF)正极组装的高性能NH 基全电池,在500次循环后表现出长期循环稳定性,容量保持率为93.95%。这项工作开创了利用π - π相互作用显著提高NH 存储性能的概念,为推进AAIBs研究提供了一种新策略。