Sheng Youwei, Xie Jiangwei, Yang Ruidong, Yu Hongjie, Deng Kai, Wang Jianguo, Wang Hongjing, Wang Liang, Xu You
State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202410442. doi: 10.1002/anie.202410442. Epub 2024 Sep 23.
Renewable electricity driven electrosynthesis of cyclohexanone oxime (CHNO) from cyclohexanone (CHO) and nitrogen oxide (NO) is a promising alternative to traditional environment-unfriendly industrial technologies for green synthesis of CHNO. Precisely controlling the reaction pathway of the CHO/NO-involved electrochemical reductive coupling reaction is crucial for selectively producing CHNO, which is yet still challenging. Herein, we report a porous high-entropy alloy PdCuAgBiIn metallene (HEA-PdCuAgBiInene) to boost the electrosynthesis of CHNO from CHO and nitrite, achieving a high Faradaic efficiency (47.6 %) and almost 100 % yield under ambient conditions. In situ Fourier transform infrared spectroscopy and theoretical calculations demonstrate that unconventional orbital hybridization between d-block metals and p-block metals could regulate the local electronic structure of active sites and induce electron localization of electron-rich Pd sites, which tunes the active hydrogen supply, facilitates the generation and enrichment of key intermediates NHOH* and CHO*, and efficiently promotes their C-N coupling to selectively produce CHNO.
利用可再生电力将环己酮(CHO)和氮氧化物(NO)电合成环己酮肟(CHNO),是传统环境不友好型工业技术绿色合成CHNO的一种有前景的替代方法。精确控制涉及CHO/NO的电化学还原偶联反应的反应途径对于选择性生产CHNO至关重要,而这仍然具有挑战性。在此,我们报道了一种多孔高熵合金钯铜银铋铟金属烯(HEA-PdCuAgBiInene),以促进由CHO和亚硝酸盐电合成CHNO,在环境条件下实现了高法拉第效率(47.6%)和几乎100%的产率。原位傅里叶变换红外光谱和理论计算表明,d区金属和p区金属之间非常规的轨道杂化可以调节活性位点的局部电子结构,并诱导富电子钯位点的电子定位,从而调节活性氢的供应,促进关键中间体NHOH和CHO的生成和富集,并有效地促进它们的C-N偶联以选择性地生产CHNO。