Wagle Kamal, Rehn Daniel A, Mattsson Ann E, Mason Harris E, Malone Michael W
Computational Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Chem Mater. 2024 Jul 19;36(15):7162-7175. doi: 10.1021/acs.chemmater.4c00883. eCollection 2024 Aug 13.
Solid-state nuclear magnetic resonance (SSNMR) and nuclear quadrupole resonance (NQR) spectra provide detailed information about the electronic and atomic structure of solids. Modern methods such as density functional theory (DFT) can be used to calculate NMR and NQR spectra from first-principles, providing a meaningful avenue to connect theory and experiment. Prediction of SSNMR and NQR spectra from DFT relies on accurate calculation of the electric field gradient (EFG) tensor associated with the potential of electrons at the nuclear centers. While static calculations of EFGs are commonly seen in the literature, the effects of dynamical motion of atoms in molecules and solids have been less explored. In this study, we develop a method to calculate EFGs of solids while taking into account the dynamics of atoms through DFT-based molecular dynamics simulations. The method we develop is general, in the sense that it can be applied to any material at any desired temperature and pressure. Here, we focus on application of the method to NaNO and study in detail the EFGs of N, O, and Na. We find in the cases of N and O that the dynamical motion of the atoms can be used to calculate mean EFGs that are in closer agreement with experiments than those of static calculations. For Na, we find a complex behavior of the EFGs when atomic motion is incorporated that is not at all captured in static calculations. In particular, we find a distribution of EFGs that is influenced strongly by the local (changing) bond environment, with a pattern that reflects the coordination structure of Na. We expect the methodology developed here to provide a path forward for understanding materials in which static EFG calculations do not align with experiments.
固态核磁共振(SSNMR)和核四极共振(NQR)光谱提供了有关固体电子和原子结构的详细信息。诸如密度泛函理论(DFT)之类的现代方法可用于从第一性原理计算NMR和NQR光谱,为连接理论与实验提供了一条有意义的途径。从DFT预测SSNMR和NQR光谱依赖于与原子核中心电子势相关的电场梯度(EFG)张量的精确计算。虽然EFG的静态计算在文献中很常见,但分子和固体中原子动态运动的影响却很少被探讨。在本研究中,我们开发了一种方法,通过基于DFT的分子动力学模拟来计算固体的EFG,同时考虑原子的动力学。我们开发的方法具有通用性,即它可以应用于任何材料在任何所需的温度和压力下。在这里,我们专注于该方法在NaNO上的应用,并详细研究N、O和Na的EFG。我们发现在N和O的情况下,原子的动态运动可用于计算平均EFG,其与实验结果的一致性比静态计算的结果更好。对于Na,我们发现当考虑原子运动时,EFG表现出复杂的行为,这在静态计算中完全没有体现。特别是,我们发现EFG的分布受到局部(变化的)键环境的强烈影响,其模式反映了Na的配位结构。我们期望这里开发的方法为理解静态EFG计算与实验结果不一致的材料提供一条前进的道路。