Suppr超能文献

通过 Δ-机器学习预测密度泛函理论质量核磁共振位移。

Predicting Density Functional Theory-Quality Nuclear Magnetic Resonance Chemical Shifts via Δ-Machine Learning.

机构信息

Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.

出版信息

J Chem Theory Comput. 2021 Feb 9;17(2):826-840. doi: 10.1021/acs.jctc.0c00979. Epub 2021 Jan 11.

Abstract

First-principles prediction of nuclear magnetic resonance chemical shifts plays an increasingly important role in the interpretation of experimental spectra, but the required density functional theory (DFT) calculations can be computationally expensive. Promising machine learning models for predicting chemical shieldings in general organic molecules have been developed previously, though the accuracy of those models remains below that of DFT. The present study demonstrates how much higher accuracy chemical shieldings can be obtained via the Δ-machine learning approach, with the result that the errors introduced by the machine learning model are only one-half to one-third the errors expected for DFT chemical shifts relative to experiment. Specifically, an ensemble of neural networks is trained to correct PBE0/6-31G chemical shieldings up to the target level of PBE0/6-311+G(2d,p). It can predict H, C, N, and O chemical shieldings with root-mean-square errors of 0.11, 0.70, 1.69, and 2.47 ppm, respectively. At the same time, the Δ-machine learning approach is 1-2 orders of magnitude faster than the target large-basis calculations. It is also demonstrated that the machine learning model predicts experimental solution-phase NMR chemical shifts in drug molecules with only modestly worse accuracy than the target DFT model. Finally, the ability to estimate the uncertainty in the predicted shieldings based on variations within the ensemble of neural network models is also assessed.

摘要

基于第一性原理的核磁共振化学位移预测在实验谱图解释中发挥着越来越重要的作用,但所需的密度泛函理论(DFT)计算可能非常耗时。之前已经开发出了用于预测一般有机分子化学屏蔽的有前途的机器学习模型,但这些模型的准确性仍然低于 DFT。本研究展示了通过 Δ-机器学习方法可以获得多高的化学位移精度,其结果是,机器学习模型引入的误差仅为相对于实验的 DFT 化学位移的一半到三分之一。具体来说,通过训练神经网络集合来校正 PBE0/6-31G 化学屏蔽值,直到达到 PBE0/6-311+G(2d,p)的目标水平。它可以分别以 0.11、0.70、1.69 和 2.47 ppm 的均方根误差预测 H、C、N 和 O 的化学屏蔽值。同时,与目标大基计算相比,Δ-机器学习方法的速度快 1-2 个数量级。还证明了该机器学习模型预测药物分子中溶液相 NMR 化学位移的准确性仅略低于目标 DFT 模型。最后,还评估了基于神经网络模型集合内的变化来估计预测屏蔽值的不确定性的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验