Zheng Tianyuan, Mitchell John B O, Dobson Simon
School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SX, U.K.
EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, U.K.
ACS Omega. 2024 Jul 31;9(32):35209-35222. doi: 10.1021/acsomega.4c06163. eCollection 2024 Aug 13.
The solubility of chemical substances in water is a critical parameter in pharmaceutical development, environmental chemistry, agrochemistry, and other fields; however, accurately predicting it remains a challenge. This study aims to evaluate and compare the effectiveness of some of the most popular machine learning modeling methods and molecular featurization techniques in predicting aqueous solubility. Although these methods were not implemented in a competitive environment, some of their performance surpassed previous benchmarks, offering gradual but significant improvements. Our results show that methods based on graph convolution and graph attention mechanisms demonstrated exceptional predictive abilities with high-quality data sets, albeit with a sensitivity to data noise and errors. In contrast, models leveraging molecular descriptors not only provided better interpretability but also showed more resilience when dealing with inherent noise and errors in data. Our analysis of over 4000 molecular descriptors used in various models identified that approximately 800 of these descriptors make a significant contribution to solubility prediction. These insights offer guidance and direction for future developments in solubility prediction.
化学物质在水中的溶解度是药物研发、环境化学、农业化学及其他领域中的一个关键参数;然而,准确预测它仍然是一项挑战。本研究旨在评估和比较一些最流行的机器学习建模方法和分子特征化技术在预测水溶性方面的有效性。尽管这些方法并非在竞争环境中实施,但其一些性能超越了先前的基准,带来了逐步但显著的改进。我们的结果表明,基于图卷积和图注意力机制的方法在高质量数据集上展现出卓越的预测能力,尽管对数据噪声和误差较为敏感。相比之下,利用分子描述符的模型不仅提供了更好的可解释性,而且在处理数据中固有的噪声和误差时表现出更强的适应性。我们对各种模型中使用的4000多个分子描述符进行分析后发现,其中约800个描述符对溶解度预测有显著贡献。这些见解为溶解度预测的未来发展提供了指导和方向。