Suppr超能文献

用于连续生产病毒样颗粒以实现自主运行的数字孪生。

Digital Twin for Continuous Production of Virus-like Particles toward Autonomous Operation.

作者信息

Hengelbrock Alina, Probst Finja, Baukmann Simon, Uhl Alexander, Tschorn Natalie, Stitz Jörn, Schmidt Axel, Strube Jochen

机构信息

Institute for Separation and Process Technology, Clausthal University of Technology, Clausthal 38678, Zellerfeld, Germany.

Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen 51379, Germany.

出版信息

ACS Omega. 2024 Jul 25;9(32):34990-35013. doi: 10.1021/acsomega.4c04985. eCollection 2024 Aug 13.

Abstract

Lentiviral vector and virus-like particle (VLP) manufacturing have been published in fed-batch upstream and batch downstream modes before. Batch downstream and continuous upstream in perfusion mode were reported as well. This study exemplifies development and validation steps for a digital twin combining a physical-chemical-based mechanistic model for all unit operations with a process analytical technology strategy in order to show the efforts and benefits of autonomous operation approaches for manufacturing scale. As the general models are available from various other biologic manufacturing studies, the main step is model calibration for the human embryo kidney cell-based VLPs with experimental quantitative validation within the Quality-by-Design (QbD) approach, including risk assessment to define design and control space. For continuous operation in perfusion mode, the main challenge is the efficient separation of large particle manifolds for VLPs and cells, including cell debris, which is of similar size. Here, innovative tangential flow filtration operations are needed to avoid fast blocking with low mechanical stress pumps. A twofold increase of productivity was achieved using simulation case studies. This increase is similar to improvements previously described for other entities like plasmid DNAs, monoclonal antibodies (mAbs), and single-chain fragments of variability (scFv) fragments. The advantages of applying a digital twin for an advanced process control strategy have proven additional productivity gains of 20% at 99.9% reliability.

摘要

慢病毒载体和病毒样颗粒(VLP)的生产之前已有在补料分批上游模式和分批下游模式下的报道。也有关于分批下游和灌注模式下连续上游的报道。本研究例证了一个数字孪生体的开发和验证步骤,该数字孪生体将所有单元操作的基于物理化学的机理模型与过程分析技术策略相结合,以展示制造规模下自主操作方法的努力和益处。由于通用模型可从其他各种生物制造研究中获得,主要步骤是对基于人胚肾细胞的VLP进行模型校准,并在质量源于设计(QbD)方法内进行实验定量验证,包括风险评估以定义设计和控制空间。对于灌注模式下的连续操作,主要挑战是有效分离VLP和细胞(包括细胞碎片)的大颗粒流,这些细胞碎片大小相似。在此,需要创新的切向流过滤操作,以避免使用低机械应力泵时快速堵塞。通过模拟案例研究实现了生产率提高两倍。这种提高与先前针对其他实体(如质粒DNA、单克隆抗体(mAb)和单链可变片段(scFv)片段)所描述的改进相似。在99.9%的可靠性下,应用数字孪生体实现先进过程控制策略的优势已证明额外提高了20%的生产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2084/11325504/c1e246afb121/ao4c04985_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验