Suppr超能文献

利用氘标记和同位素效应解析光氧化还原烯丙基sp-C-H芳基化的冲突机制

Resolving Conflicting Mechanisms for Photoredox Allylic sp-CH Arylation Using Deuterium-Labeling and Isotope Effects.

作者信息

Dagar Anuradha, Das Tamal, Mallojjala Sharath Chandra, Hirschi Jennifer S, Vetticatt Mathew J

机构信息

Department of Chemistry, Binghamton University, Vestal, New York 13850, United States.

出版信息

ACS Catal. 2024 Jun 21;14(12):9469-9475. doi: 10.1021/acscatal.4c01645. Epub 2024 Jun 7.

Abstract

Two conflicting mechanisms have emerged for the direct arylation of allylic C-H bonds enabled by the combined use of thiol and photoredox catalysis. In the original report ( , , 74-77), a radical coupling step-between a radical anion of an arene and an allylic radical-is proposed to be the key C-C bond-forming step. A recent mechanistic study (. , , 223-230) has suggested that the C-C bond formation occurs via radical anion capture by the olefin followed by an H atom transfer (HAT) event to deliver the allylic C-H arylation product. Utilizing cyclohexene-4,4,5,5- as a mechanistic probe to distinguish between otherwise indistinguishable regioisomeric allylic C-H arylation products in the reaction of cyclohexene and dicyanobenzene, we establish that the radical anion capture-HAT mechanism is not operative. Furthermore, experimental / studies and DFT calculations lend strong support to the radical coupling mechanism proceeding via irreversible HAT to form the allylic radical of cyclohexene, followed by regioselectivity-determining radical coupling (for unsymmetrical olefins) and facile decyanation.

摘要

通过硫醇与光氧化还原催化的联合使用实现烯丙基C-H键直接芳基化的过程中,出现了两种相互矛盾的机制。在最初的报告(参考文献,74 - 77)中,提出芳烃的自由基阴离子与烯丙基自由基之间的自由基偶联步骤是关键的C-C键形成步骤。最近的一项机理研究(参考文献,223 - 230)表明,C-C键的形成是通过烯烃捕获自由基阴离子,随后发生氢原子转移(HAT)事件,从而得到烯丙基C-H芳基化产物。利用环己烯-4,4,5,5-作为机理探针,以区分环己烯与二氰基苯反应中原本难以区分的区域异构烯丙基C-H芳基化产物,我们确定自由基阴离子捕获-HAT机制并不起作用。此外,实验和理论研究以及密度泛函理论(DFT)计算有力地支持了自由基偶联机制,该机制通过不可逆的HAT形成环己烯的烯丙基自由基,随后进行区域选择性决定的自由基偶联(对于不对称烯烃)以及容易的脱氰反应。

相似文献

1
Resolving Conflicting Mechanisms for Photoredox Allylic sp-CH Arylation Using Deuterium-Labeling and Isotope Effects.
ACS Catal. 2024 Jun 21;14(12):9469-9475. doi: 10.1021/acscatal.4c01645. Epub 2024 Jun 7.
2
Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer.
J Org Chem. 2022 Jan 7;87(1):223-230. doi: 10.1021/acs.joc.1c02235. Epub 2021 Dec 9.
3
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
4
The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.
Nature. 2015 Mar 5;519(7541):74-7. doi: 10.1038/nature14255.
8
Asymmetric, Remote C(sp)-H Arylation via Sulfinyl-Smiles Rearrangement.
Angew Chem Int Ed Engl. 2024 Apr 22;63(17):e202319158. doi: 10.1002/anie.202319158. Epub 2024 Mar 20.
9
Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C-H Bonds.
J Am Chem Soc. 2020 Oct 7;142(40):16942-16952. doi: 10.1021/jacs.0c05010. Epub 2020 Sep 22.
10
Direct Allylic C(sp )-H and Vinylic C(sp )-H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light.
Angew Chem Int Ed Engl. 2021 May 17;60(21):11779-11783. doi: 10.1002/anie.202101947. Epub 2021 Apr 14.

本文引用的文献

1
Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer.
J Org Chem. 2022 Jan 7;87(1):223-230. doi: 10.1021/acs.joc.1c02235. Epub 2021 Dec 9.
2
Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes.
J Am Chem Soc. 2021 Aug 25;143(33):13022-13028. doi: 10.1021/jacs.1c07562. Epub 2021 Aug 11.
3
Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones.
J Org Chem. 2021 May 7;86(9):6305-6313. doi: 10.1021/acs.joc.1c00099. Epub 2021 Apr 23.
4
Vibrationally Hot and Cold Triplets. Sensitizer-Dependent Dynamics and Localized Vibrational Promotion of a Di-π-methane Rearrangement.
J Am Chem Soc. 2020 Nov 25;142(47):19885-19888. doi: 10.1021/jacs.0c10468. Epub 2020 Nov 12.
5
Palladium-Catalyzed Asymmetric Allylic C-H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications.
Acc Chem Res. 2020 Dec 15;53(12):2841-2854. doi: 10.1021/acs.accounts.0c00477. Epub 2020 Oct 2.
6
Iridium-Catalyzed Asymmetric Allylic Substitution Reactions.
Chem Rev. 2019 Feb 13;119(3):1855-1969. doi: 10.1021/acs.chemrev.8b00506. Epub 2018 Dec 24.
7
Sulfonamides as new hydrogen atom transfer (HAT) catalysts for photoredox allylic and benzylic C-H arylations.
Chem Commun (Camb). 2018 Mar 27;54(26):3215-3218. doi: 10.1039/c7cc09457d.
9
Photochemical Nickel-Catalyzed C-H Arylation: Synthetic Scope and Mechanistic Investigations.
J Am Chem Soc. 2016 Oct 5;138(39):12715-12718. doi: 10.1021/jacs.6b04789. Epub 2016 Sep 21.
10
Enantioselective Photocatalytic [3 + 2] Cycloadditions of Aryl Cyclopropyl Ketones.
J Am Chem Soc. 2016 Apr 13;138(14):4722-5. doi: 10.1021/jacs.6b01728. Epub 2016 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验