Department of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India.
ACS Chem Neurosci. 2024 Sep 4;15(17):3136-3151. doi: 10.1021/acschemneuro.4c00253. Epub 2024 Aug 19.
The inhibition of amyloid-β (Aβ) fibrillation and clearance of Aβ aggregates have emerged as a potential pharmacological strategy to alleviate Aβ aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged -substituted oligopyrrolamides for its notable ability to inhibit Aβ fibrillation, disintegrate intracellular cytotoxic Aβ oligomers, and alleviate Aβ-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aβ fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aβ fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of β-strands and the emergence of a helix conformation, indicating a loss of the well-organized β-sheet-rich structure of the disease-relevant Aβ fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aβ fibril (Δ= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged -propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aβ fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aβ peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aβ fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aβ fibril. The illumination of key interactions responsible for the destabilization of the Aβ fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aβ aggregates in AD.
淀粉样蛋白-β(Aβ)纤维的抑制和 Aβ 聚集体的清除已成为一种有潜力的药理学策略,可以减轻阿尔茨海默病(AD)中 Aβ 聚集体诱导的神经毒性。Maity 等人从小的正电荷取代寡吡咯烷酰胺文库中筛选出 ADH-353,因为它具有显著抑制 Aβ 纤维形成、分解细胞内细胞毒性 Aβ 低聚物以及减轻 SH-SY5Y 和 N2a 细胞中 Aβ 诱导的细胞毒性的能力。然而,ADH-353 与 Aβ 纤维相互作用,导致其断裂和随后清除的分子机制仍不清楚。因此,本工作使用分子动力学模拟阐明了 ADH-353 破坏神经毒性 Aβ 纤维(PDB ID 2NAO)的详细分子机制。有趣的是,模拟过程中的构象快照描绘了β-链的缩短和消失以及螺旋构象的出现,表明在加入 ADH-353 后,疾病相关 Aβ 纤维中有序的富含β-片层的结构丧失。ADH-353 与 Aβ 纤维强烈结合(Δ= -142.91 ± 1.61 kcal/mol),ADH-353 中带正电荷的丙基胺侧链与 Aβ 纤维中的谷氨酸(Glu3、Glu11 和 Glu22)和天冬氨酸(Asp7 和 Asp23)酸残基之间的静电相互作用有显著贡献。这与异核单量子相干 NMR 研究一致,该研究表明 ADH-353 与 Aβ 肽的结合是由静电和疏水相互作用驱动的。此外,在加入 ADH-353 后 Aβ 纤维链的结合亲和力显著降低表明,链间相互作用减弱,导致 Aβ 纤维的双马蹄铁构象被破坏。本工作阐明了 ADH-353 破坏 Aβ 纤维的关键相互作用,这将极大地有助于设计具有增强清除 AD 中 Aβ 聚集体功效的新型化学支架。