Department of Biostatistics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA.
Stat Methods Med Res. 2024 Oct;33(10):1718-1730. doi: 10.1177/09622802241267355. Epub 2024 Aug 19.
In cancer research, basket trials aim to assess the efficacy of a drug using baskets, wherein patients are organized into subgroups according to their tumor type. In this context, using information borrowing strategy may increase the probability of detecting drug efficacy in active baskets, by shrinking together the estimates of the parameters characterizing the drug efficacy in baskets with similar drug activity. Here, we propose to use fusion-penalized logistic regression models to borrow information in the setting of a phase 2 single-arm basket trial with binary outcome. We describe our proposed strategy and assess its performance via a simulation study. We assessed the impact of heterogeneity in drug efficacy, prevalence of each tumor types and implementation of interim analyses on the operating characteristics of our proposed design. We compared our approach with two existing designs, relying on the specification of prior information in a Bayesian framework to borrow information across similar baskets. Notably, our approach performed well when the effect of the drug varied greatly across the baskets. Our approach offers several advantages, including limited implementation efforts and fast computation, which is essential when planning a new trial as such planning requires intensive simulation studies.
在癌症研究中,篮子试验旨在使用篮子评估药物的疗效,其中患者根据肿瘤类型组织成亚组。在这种情况下,使用信息借用策略可以通过将具有相似药物活性的篮子中的药物疗效特征参数的估计值收缩在一起,增加在活跃篮子中检测药物疗效的可能性。在这里,我们提出使用融合惩罚逻辑回归模型来在具有二项结果的 2 期单臂篮子试验中借用信息。我们描述了我们提出的策略,并通过模拟研究评估了它的性能。我们评估了药物疗效、每种肿瘤类型的流行程度和中期分析实施的异质性对我们提出的设计操作特征的影响。我们将我们的方法与两种现有的设计进行了比较,这些设计依赖于在贝叶斯框架中指定先验信息以在类似的篮子中借用信息。值得注意的是,当药物的效果在篮子之间有很大差异时,我们的方法表现良好。我们的方法具有几个优点,包括实施工作有限和计算速度快,这对于计划新试验至关重要,因为这种计划需要密集的模拟研究。