Chae Kyunghee, Mohamad Nur Aqlili Riana Che, Kim Jeonghyeon, Won Dong-Il, Lin Zhiqun, Kim Jeongwon, Kim Dong Ha
Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
Chem Soc Rev. 2024 Sep 16;53(18):9029-9058. doi: 10.1039/d3cs00316g.
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CORR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
将手性,特别是通过手性诱导自旋选择性(CISS)效应,整合到电催化过程中,是提高能量转换和存储系统效率的一种开创性方法。本综述深入探讨了新兴的手性电催化领域,阐明了CISS效应在包括析氧反应(OER)、氧还原反应(ORR)和析氢反应(HER)在内的一系列电催化反应中的基本原理、历史发展、理论基础和实际应用。我们探索了通过结构和表面工程诱导CISS效应的方法进展,并讨论了从磁导原子力显微镜(mc-AFM)到过氧化氢滴定等各种测量技术。此外,本综述强调了CISS效应在应对氮还原反应(NRR)和一氧化碳还原反应(CORR)过程中的关键挑战以及减轻金属空气电池中单线态氧形成方面的变革潜力,从而提高其性能和耐久性。通过这一全面概述,我们旨在强调纳入手性和自旋极化在推动可持续能源应用的电催化技术方面的重要作用。