Suppr超能文献

钙钛矿型电催化剂中的分子氧二聚体与晶格不稳定性

Molecular O Dimers and Lattice Instability in a Perovskite Electrocatalyst.

作者信息

Bosse Jan, Gu Jian, Choi Jaewon, Roddatis Vladimir, Zhuang Yong-Bin, Kani Nagaarjhuna A, Hartl Anna, Garcia-Fernandez Mirian, Zhou Ke-Jin, Nicolaou Alessandro, Lippert Thomas, Cheng Jun, Akbashev Andrew R

机构信息

Laboratory for Multiscale Materials Experiments, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8049 Zurich, Switzerland.

出版信息

J Am Chem Soc. 2024 Aug 28;146(34):23989-23997. doi: 10.1021/jacs.4c07233. Epub 2024 Aug 19.

Abstract

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO electrocatalyst develops bulk lattice instability, which results in the formation of molecular O dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.

摘要

在电催化析氧反应(OER)过程中,氧化物电极的结构降解是水电解中的一个主要挑战。尽管已知OER会引起表面层的变化,但对于其对电催化剂本体及其整体相稳定性的影响却知之甚少。在此,我们表明,在OER条件下,一种高活性的SrCoO电催化剂会出现体相晶格不稳定性,这导致在体相中形成分子O二聚体,并通过化学-机械耦合诱导纳米级非晶化。利用高分辨率共振非弹性X射线散射和第一性原理计算,我们揭示了钙钛矿内部晶格氧的电位依赖性演化,并证明O二聚体在密集堆积的晶格中是稳定的,从而挑战了O二聚体需要足够原子间距的假设。我们还表明,在OER条件下,SrCoO中局部原子重排的能量成本变得非常低,导致在嵌入诱导应力下出现异常的非晶化。因此,我们提出非晶化能量可以从第一性原理计算得出,并可用于评估电催化剂的稳定性。我们的研究表明,在OER条件下电催化剂的极端氧化会使晶格本质上不稳定,并导致体相阴离子氧化还原和无序,这解释了为什么一些氧化物材料在水电解条件下不稳定并形成厚的非晶层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验