Yang Zhenzhong, Qu Ke, Zhao Yifeng, Wang Le, Kovarik Libor, Sushko Peter V, Lyu Yingjie, Zhang Jianbing, Yu Pu, Duan Chungang, Du Yingge
Key Laboratory of Polar Materials and Devices, Department of Electronics, East China Normal University, Shanghai 200241, China.
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Sci Adv. 2025 Aug 22;11(34):eadx8890. doi: 10.1126/sciadv.adx8890.
Understanding how water vapor interacts with transition metal oxides (TMOs) is critical for tailoring material properties to improve performance and enable new technologies. Despite extensive research efforts, atomic-scale mechanisms underpinning dynamic reactions and reaction-induced phase transitions remain elusive. Here, we use in situ environmental transmission electron microscopy to investigate how water vapor oxidizes vacancy-ordered SrCoO at moderately elevated temperatures, demonstrating that water molecules can initiate oxidation more effectively than oxygen under comparable conditions. We discover a distinct "staging" behavior during the oxidation process: A fully ordered intermediate phase, SrCoO, forms before transitioning into a near-perovskite SrCoO. In addition, antiphase boundaries, originating at step terraces of SrTiO, alleviate strain by creating reversible nanoscale "gaps" during lattice contraction under oxidation, providing a pathway for preserving structural integrity throughout redox cycling. This work provides atomic-level guidance for engineering TMOs by leveraging water vapor to control their redox behavior and tailor functional properties.
了解水蒸气如何与过渡金属氧化物(TMOs)相互作用对于调整材料性能以提高性能并实现新技术至关重要。尽管进行了广泛的研究,但支撑动态反应和反应诱导相变的原子尺度机制仍然难以捉摸。在这里,我们使用原位环境透射电子显微镜来研究水蒸气在适度升高的温度下如何氧化空位有序的SrCoO,表明在可比条件下,水分子比氧气能更有效地引发氧化。我们在氧化过程中发现了一种独特的“阶段”行为:在转变为近钙钛矿SrCoO之前,会形成一个完全有序的中间相SrCoO。此外,起源于SrTiO台阶的反相边界通过在氧化过程中的晶格收缩期间产生可逆的纳米级“间隙”来缓解应变,为在整个氧化还原循环中保持结构完整性提供了一条途径。这项工作通过利用水蒸气来控制TMOs的氧化还原行为并调整功能特性,为工程TMOs提供了原子级指导。