Sokolov Maksim, Doblhoff-Dier Katharina, Exner Kai S
Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Cluster of Excellence RESOLV, 44801 Bochum, Germany.
Phys Chem Chem Phys. 2024 Aug 28;26(34):22359-22370. doi: 10.1039/d4cp01792g.
Pentlandites are natural ores with structural properties comparable to that of [FeNi] hydrogenases. While this class of transition-metal sulfide materials - (Fe,Ni)S - with a variable Fe : Ni ratio has been proven to be an active electrode material for the hydrogen evolution reaction, it is also discussed as electrocatalyst for the alkaline oxygen evolution reaction (OER), corresponding to the bottleneck of anion exchange membrane electrolyzers for green hydrogen production. Despite the experimental evidence for the use of (Fe,Ni)S as an OER catalyst, a detailed investigation of the elementary reaction steps, including consideration of adsorbate coverages and limiting steps under anodic polarizing conditions, is still missing. We address this gap in the present manuscript by gaining atomistic insights into the OER on an FeNiS(111) surface through density functional theory calculations combined with a descriptor-based analysis. We use this system to introduce best practices for modeling this rather complex material by pointing out hidden pitfalls that can arise when using the popular computational hydrogen electrode approach to describe electrocatalytic processes at the electrified solid/liquid interface for energy conversion and storage.
镍黄铁矿是一种天然矿石,其结构特性与[FeNi]氢化酶相当。虽然这类具有可变Fe:Ni比的过渡金属硫化物材料——(Fe,Ni)S——已被证明是析氢反应的活性电极材料,但它也被讨论作为碱性析氧反应(OER)的电催化剂,这对应于绿色制氢的阴离子交换膜电解槽的瓶颈。尽管有实验证据表明(Fe,Ni)S可作为OER催化剂,但仍缺少对基本反应步骤的详细研究,包括在阳极极化条件下对吸附质覆盖度和限速步骤的考虑。我们在本手稿中通过结合基于描述符的分析,利用密度泛函理论计算对FeNiS(111)表面的OER获得原子尺度的见解,从而弥补这一空白。我们通过指出在使用流行的计算氢电极方法来描述用于能量转换和存储的带电固/液界面处的电催化过程时可能出现的潜在陷阱,利用这个系统介绍对这种相当复杂的材料进行建模的最佳实践。